- L_fusion0.334Latent heat of fusion [J/kg]
Default:0.334
C++ Type:double
Controllable:No
Description:Latent heat of fusion [J/kg]
- M_liquid0.0180149Liquid molar mass
Default:0.0180149
C++ Type:double
Controllable:No
Description:Liquid molar mass
- M_vapor0.0180149Vapor molar mass
Default:0.0180149
C++ Type:double
Controllable:No
Description:Vapor molar mass
- T_c647.096Critical temperature [K]
Default:647.096
C++ Type:double
Controllable:No
Description:Critical temperature [K]
- T_sat_max647Maximum temperature value in saturation curve [K]
Default:647
C++ Type:double
Controllable:No
Description:Maximum temperature value in saturation curve [K]
- T_sat_min274Minimum temperature value in saturation curve [K]
Default:274
C++ Type:double
Controllable:No
Description:Minimum temperature value in saturation curve [K]
- T_triple273.16Triple-point temperature [K]
Default:273.16
C++ Type:double
Controllable:No
Description:Triple-point temperature [K]
- cv_liquid1816Liquid isochoric specific heat capacity
Default:1816
C++ Type:double
Controllable:No
Description:Liquid isochoric specific heat capacity
- cv_vapor1040Vapor isochoric specific heat capacity
Default:1040
C++ Type:double
Controllable:No
Description:Vapor isochoric specific heat capacity
- e_c2.70298e+06Critical specific internal energy [J/kg]
Default:2.70298e+06
C++ Type:double
Controllable:No
Description:Critical specific internal energy [J/kg]
- emit_on_nannoneRaise mooseWarning or mooseError?
Default:none
C++ Type:MooseEnum
Controllable:No
Description:Raise mooseWarning or mooseError?
- execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM, ALWAYS.
Default:TIMESTEP_END
C++ Type:ExecFlagEnum
Controllable:No
Description:The list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM, ALWAYS.
- fp_liquidLiquid single-phase fluid properties user object name
C++ Type:UserObjectName
Controllable:No
Description:Liquid single-phase fluid properties user object name
- fp_vaporVapor single-phase fluid properties user object name
C++ Type:UserObjectName
Controllable:No
Description:Vapor single-phase fluid properties user object name
- gamma_liquid2.35Liquid heat capacity ratio
Default:2.35
C++ Type:double
Controllable:No
Description:Liquid heat capacity ratio
- gamma_vapor1.43Vapor heat capacity ratio
Default:1.43
C++ Type:double
Controllable:No
Description:Vapor heat capacity ratio
- k_liquid0.5Liquid thermal conductivity
Default:0.5
C++ Type:double
Controllable:No
Description:Liquid thermal conductivity
- k_vapor0.026Vapor thermal conductivity
Default:0.026
C++ Type:double
Controllable:No
Description:Vapor thermal conductivity
- mu_liquid0.0002818Liquid dynamic viscosity
Default:0.0002818
C++ Type:double
Controllable:No
Description:Liquid dynamic viscosity
- mu_vapor1.344e-05Vapor dynamic viscosity
Default:1.344e-05
C++ Type:double
Controllable:No
Description:Vapor dynamic viscosity
- n_sat_samples374Number of samples to take in saturation curve
Default:374
C++ Type:unsigned int
Controllable:No
Description:Number of samples to take in saturation curve
- p_c2.209e+07Critical pressure [Pa]
Default:2.209e+07
C++ Type:double
Controllable:No
Description:Critical pressure [Pa]
- p_inf_liquid1e+09Liquid stiffness pressure
Default:1e+09
C++ Type:double
Controllable:No
Description:Liquid stiffness pressure
- p_inf_vapor0Vapor stiffness pressure
Default:0
C++ Type:double
Controllable:No
Description:Vapor stiffness pressure
- p_sat_guess611Initial guess for saturation pressure Newton solve [Pa]
Default:611
C++ Type:double
Controllable:No
Description:Initial guess for saturation pressure Newton solve [Pa]
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- q_liquid-1.167e+06Liquid reference specific internal energy
Default:-1.167e+06
C++ Type:double
Controllable:No
Description:Liquid reference specific internal energy
- q_prime_liquid0Liquid reference specific entropy
Default:0
C++ Type:double
Controllable:No
Description:Liquid reference specific entropy
- q_prime_vapor-23000Vapor reference specific entropy
Default:-23000
C++ Type:double
Controllable:No
Description:Vapor reference specific entropy
- q_vapor2.03e+06Vapor reference specific internal energy
Default:2.03e+06
C++ Type:double
Controllable:No
Description:Vapor reference specific internal energy
- rho_c322Critical density [kg/m^3]
Default:322
C++ Type:double
Controllable:No
Description:Critical density [kg/m^3]
- sigma_A0.2358'A' constant used in surface tension correlation [N/m]
Default:0.2358
C++ Type:double
Controllable:No
Description:'A' constant used in surface tension correlation [N/m]
- sigma_B1.256'B' constant used in surface tension correlation
Default:1.256
C++ Type:double
Controllable:No
Description:'B' constant used in surface tension correlation
- sigma_C0.625'C' constant used in surface tension correlation
Default:0.625
C++ Type:double
Controllable:No
Description:'C' constant used in surface tension correlation
StiffenedGasTwoPhaseFluidProperties
This class corresponds to both liquid and vapor phases being approximated using the stiffened gas equation of state (SGEOS).
The saturation curve is generated by reasoning that at thermodynamic equilibrium, the Gibbs free enthalpy of the phases must be equal at the interface (see Equation (38) of Berry et al. (2010)). A saturation curve is stored at a number of points determined by user-defined parameters, and then linear interpolation is used to get values.
Surface tension is computed using the following form that IAPWS uses for approximating the surface tension of water Water and Steam (2014): where
is the temperature [K],
is the critical temperature [K], and
[N/m], [-], and [-] are a fluid-dependent constants.
Input Parameters
- allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
Default:False
C++ Type:bool
Controllable:No
Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
- allow_imperfect_jacobiansFalsetrue to allow unimplemented property derivative terms to be set to zero for the AD API
Default:False
C++ Type:bool
Controllable:No
Description:true to allow unimplemented property derivative terms to be set to zero for the AD API
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- execution_order_group0Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
Default:0
C++ Type:int
Controllable:No
Description:Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
- force_postauxFalseForces the UserObject to be executed in POSTAUX
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in POSTAUX
- force_preauxFalseForces the UserObject to be executed in PREAUX
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in PREAUX
- force_preicFalseForces the UserObject to be executed in PREIC during initial setup
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in PREIC during initial setup
- fp_typetwo-phase-fpType of the fluid property object
Default:two-phase-fp
C++ Type:FPType
Controllable:No
Description:Type of the fluid property object
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
References
- R. A. Berry, R. Saurel, and O. LeMetayer.
The discrete equation method (DEM) for fully compressible, two-phase flows in ducts of spatially varying cross-section.
Nuclear Engineering and Design, 240:3797–3818, 2010.[BibTeX]
- The International Association for the Properties of Water and Steam.
Revised release on surface tension of ordinary water substance.
Technical Report, The International Association for the Properties of Water and Steam, 2014.[BibTeX]