- boundaryThe list of boundary IDs from the mesh where this object applies
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The list of boundary IDs from the mesh where this object applies
- variableThe name of the variable that this boundary condition applies to
C++ Type:NonlinearVariableName
Controllable:No
Description:The name of the variable that this boundary condition applies to
WCNSFVMassFluxBC
Flux boundary conditions for mass advection.
The mass flux is:
with the mass flux, the density, the fluid velocity, the mass flow rate and the inlet area.
There are two options for specifying the mass flux:
specifying a mass flow rate postprocessor, which is then divided by the area of the inlet, which may also be a postprocessor.
specifying an inlet velocity postprocessor and a density functor. The functor is usually a functor material property, defined by a GeneralFunctorFluidProps.
This boundary condition works with postprocessors, which may be replaced by constant values in the input. The intended use case for this boundary condition is to be receiving its value from a coupled application, using a Receiver postprocessor.
Example input syntax
In this example input, the inlet boundary condition to the mass conservation equation is specified using a WCNSFVMassFluxBC
. The mass flux is specified using the mass flow rate and the inlet area.
[FVBCs]
# Inlet
[inlet_mass]
type = WCNSFVMassFluxBC
variable = pressure
boundary = 'left'
mdot_pp = 'inlet_mdot'
area_pp = 'area_pp_left'
rho = 'rho'
[]
[inlet_u]
type = WCNSFVMomentumFluxBC
variable = vel_x
boundary = 'left'
mdot_pp = 'inlet_mdot'
area_pp = 'area_pp_left'
rho = 'rho'
momentum_component = 'x'
[]
[inlet_v]
type = WCNSFVMomentumFluxBC
variable = vel_y
boundary = 'left'
mdot_pp = 0
area_pp = 'area_pp_left'
rho = 'rho'
momentum_component = 'y'
[]
[inlet_T]
type = WCNSFVEnergyFluxBC
variable = T_fluid
boundary = 'left'
temperature_pp = 'inlet_T'
mdot_pp = 'inlet_mdot'
area_pp = 'area_pp_left'
rho = 'rho'
cp = 'cp'
[]
[inlet_scalar]
type = WCNSFVScalarFluxBC
variable = scalar
boundary = 'left'
scalar_value_pp = 'inlet_scalar_value'
mdot_pp = 'inlet_mdot'
area_pp = 'area_pp_left'
rho = 'rho'
[]
[outlet_p]
type = INSFVOutletPressureBC
variable = pressure
boundary = 'right'
function = ${outlet_pressure}
[]
# Walls
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'top bottom'
function = 0
[]
[]
(moose/modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/flux_bcs_mdot.i)Input Parameters
- area_ppInlet area as a postprocessor
C++ Type:PostprocessorName
Controllable:No
Description:Inlet area as a postprocessor
- direction0 0 0The direction of the flow at the boundary. This is mainly used for cases when an inlet angle needs to be defined with respect to the normal and when a boundary is defined on an internal face where the normal can point in both directions. Use positive mass flux and velocity magnitude if the flux aligns with this direction vector.
Default:0 0 0
C++ Type:libMesh::Point
Controllable:No
Description:The direction of the flow at the boundary. This is mainly used for cases when an inlet angle needs to be defined with respect to the normal and when a boundary is defined on an internal face where the normal can point in both directions. Use positive mass flux and velocity magnitude if the flux aligns with this direction vector.
- displacementsThe displacements
C++ Type:std::vector<VariableName>
Controllable:No
Description:The displacements
- mdot_ppPostprocessor with the inlet mass flow rate
C++ Type:PostprocessorName
Controllable:No
Description:Postprocessor with the inlet mass flow rate
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- rhoDensity functor
C++ Type:MooseFunctorName
Controllable:No
Description:Density functor
- scaling_factor1To scale the mass flux
Default:1
C++ Type:double
Controllable:No
Description:To scale the mass flux
- velocity_ppPostprocessor with the inlet velocity norm
C++ Type:PostprocessorName
Controllable:No
Description:Postprocessor with the inlet velocity norm
Optional Parameters
- absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution
C++ Type:std::vector<TagName>
Controllable:No
Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Controllable:No
Description:The tag for the matrices this Kernel should fill
- vector_tagsnontimeThe tag for the vectors this Kernel should fill
Default:nontime
C++ Type:MultiMooseEnum
Controllable:No
Description:The tag for the vectors this Kernel should fill
Tagging Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.