INSElementIntegralEnergyAdvection

Computes the net volumetric balance of energy transported by advection

This class performs volumetric (global, or by block) integration of the energy advection term defined in INSADEnergyAdvection, which is defined by

where is the density, is the specific heat capacity, is the velocity, and is the temperature gradient. AD instantiations of this object are denoted by INSADElementIntegralEnergyAdvection, hand-coded by INSElementIntegralEnergyAdvection. The former retrieves the density and specific heat capacity as ADReal material properties while the former retrieves the same properties as Real.

This class performs volumetric integration (element-based as opposed to side-based) of the advection term because the incompressibility constraint is applied to the energy advection term and the term is not integrated by parts. Details about the finite element implementation of the energy advection term can be found on the INSADEnergyAdvection page.

Example input syntax

The INSADElementIntegralEnergyAdvection instance is used in a global energy balance calculation in

[Postprocessors]
  [convective_heat_transfer]
    type = ConvectiveHeatTransferSideIntegral
    T_solid = T
    T_fluid = 0
    htc = 1
    boundary = 'right'
  []
  [advection]
    type = INSADElementIntegralEnergyAdvection
    temperature = T
    velocity = velocity
    cp = cp
    rho = rho
    block = 1
  []
  [source]
    type = FunctionElementIntegral
    function = 'x + y'
    block = 0
  []
  [energy_balance]
    type = ParsedPostprocessor
    function = 'convective_heat_transfer + advection - source'
    pp_names = 'convective_heat_transfer advection source'
  []
[]
(moose/modules/navier_stokes/test/tests/finite_element/ins/energy-conservation/q2q1.i)

for Q2Q1 elements, e.g. second order velocity and temperature and first order pressure on QUAD9 elements and in

[Postprocessors]
  [convective_heat_transfer]
    type = ConvectiveHeatTransferSideIntegral
    T_solid = T
    T_fluid = 0
    htc = 1
    boundary = 'right'
  []
  [advection]
    type = INSADElementIntegralEnergyAdvection
    temperature = T
    velocity = velocity
    cp = cp
    rho = rho
    block = 1
  []
  [source]
    type = FunctionElementIntegral
    function = 'x + y'
    block = 0
  []
  [energy_balance]
    type = ParsedPostprocessor
    function = 'convective_heat_transfer + advection - source'
    pp_names = 'convective_heat_transfer advection source'
  []
[]
(moose/modules/navier_stokes/test/tests/finite_element/ins/energy-conservation/q1q1.i)

for Q1Q1 elements, e.g. fist order velocity, pressure, and temperature on QUAD4 elements.

Input Parameters

  • cpThe constant-pressure specific heat capacity

    C++ Type:MaterialPropertyName

    Controllable:No

    Description:The constant-pressure specific heat capacity

  • rhoThe density

    C++ Type:MaterialPropertyName

    Controllable:No

    Description:The density

  • temperatureThe temperature

    C++ Type:std::vector<VariableName>

    Controllable:No

    Description:The temperature

  • velocityThe velocity

    C++ Type:std::vector<VariableName>

    Controllable:No

    Description:The velocity

Required Parameters

  • blockThe list of blocks (ids or names) that this object will be applied

    C++ Type:std::vector<SubdomainName>

    Controllable:No

    Description:The list of blocks (ids or names) that this object will be applied

  • execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM, ALWAYS.

    Default:TIMESTEP_END

    C++ Type:ExecFlagEnum

    Options:NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM, ALWAYS, TRANSFER

    Controllable:No

    Description:The list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM, ALWAYS.

  • prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Controllable:No

    Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

Optional Parameters

  • allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).

    Default:False

    C++ Type:bool

    Controllable:No

    Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • execution_order_group0Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.

    Default:0

    C++ Type:int

    Controllable:No

    Description:Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.

  • force_postauxFalseForces the UserObject to be executed in POSTAUX

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Forces the UserObject to be executed in POSTAUX

  • force_preauxFalseForces the UserObject to be executed in PREAUX

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Forces the UserObject to be executed in PREAUX

  • force_preicFalseForces the UserObject to be executed in PREIC during initial setup

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Forces the UserObject to be executed in PREIC during initial setup

  • implicitTrueDetermines whether this object is calculated using an implicit or explicit form

    Default:True

    C++ Type:bool

    Controllable:No

    Description:Determines whether this object is calculated using an implicit or explicit form

  • outputsVector of output names where you would like to restrict the output of variables(s) associated with this object

    C++ Type:std::vector<OutputName>

    Controllable:No

    Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object

  • seed0The seed for the master random number generator

    Default:0

    C++ Type:unsigned int

    Controllable:No

    Description:The seed for the master random number generator

  • use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

Advanced Parameters