Sublattice KKS model
The sublattice Kim-Kim-Suzuki (SLKKS) Schwen et al. (2021) model is an extension of the original KKS model incorporating an additional equal chemical potential constraint among the sublattice concentration in each phase.
As such each component in the system will have corresponding phase concentrations, which are split up into per-sublattice concentrations.
Nomenclature
indexes a component, a phase, and a sublattice in the given phase. is the fraction of sublattice sites in phase .
Sublattice equilibrium
All sublattice pairs and in a given phase are assumed to be always in equilibrium, thus
This condition is enforced by the SLKKSChemicalPotential
kernel.
[chempot1a1b]
type = SLKKSChemicalPotential
variable = Cijk
k = ajk
cs = Cijk'
ks = ajk'
F = Fj
[]
With sublattices in a phase such kernels are required. That leaves one sublattice concentration variable in a given phase to be covered by a kernel.
Phase equilibrium
At the same time the original KKS model chemical potential equilibria still hold
meaning that sublattice chemical potentials (corrected for the sublattice site fractions) must be in equilibrium across phases.
That remaining sublattice concentration will couple to the next phase using a KKSPhaseChemicalPotential
kernel.
[chempot1c2a]
type = KKSPhaseChemicalPotential
variable = Cijk
ka = ajk
fa_name = Fj
cb = Cij'k
kb = aj'k
fb_name = Fj'
[]
Note that in this kernel the ajk
and aj'k
must be true site fractions ranging from 0 to 1.
Mass transport
The global concentration variables govern the mass transport along chemical potential gradients.
(1)
This equation can be implemented using multiple MatDiffusion
kernels in MOOSE. To illustrate this we can re-order the summation to yield
(2)
This means we need to add a MatDiffusion
kernel for sublattice in all phases, each operating on the variable . We use the "v" parameter to specify as the variable to take the gradient of (rather than ). The effective diffusivity passed into the kernel is , which can be provided by a DerivativeParsedMaterial
[D'i]
type = DerivativeParsedMaterial
f_name = D'i
function = Di*hi*ajk
material_property_names = 'Di hi'
constant_names = ajk
constant_expressions = 1/3
[]
Here we assume the site fraction of the current sublattice to be .
The derivation should be check to see if a phase dependent concentration or even sublattice dependent concentration is feasible.
Example
An open TDB file for the Fe-Cr system was graciously provided by Aurélie Jacob at TU Wien, based on the work in Jacob et al. (2018).
The TDB file can be converted into MOOSE DerivativeParsedMaterial
syntax using the free_energy.py
script.
mamba activate pycalphad
cd $MOOSE_DIR/modules/phase_field/examples/slkks
../../../../python/calphad/free_energy.py CrFe_Jacob.tdb BCC_A2 SIGMA
The example directory also contains an Jupyter notebook to visualize the phase diagram for the supplied Fe-Cr thermodynamic database file and the simulation results,
#
# SLKKS two phase example for the BCC and SIGMA phases. The sigma phase contains
# multiple sublattices. Free energy from
# Jacob, Aurelie, Erwin Povoden-Karadeniz, and Ernst Kozeschnik. "Revised thermodynamic
# description of the Fe-Cr system based on an improved sublattice model of the sigma phase."
# Calphad 60 (2018): 16-28.
#
# In this simulation we consider diffusion (Cahn-Hilliard) and phase transformation.
#
# This example requires CrFe_sigma_out_var_0001.csv file, which generated by first
# running the CrFe_sigma.i input file.
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 160
ny = 1
nz = 0
xmin = -25
xmax = 25
ymin = -2.5
ymax = 2.5
elem_type = QUAD4
[]
[]
[AuxVariables]
[Fglobal]
order = CONSTANT
family = MONOMIAL
[]
[]
[Functions]
[sigma_cr0]
type = PiecewiseLinear
data_file = CrFe_sigma_out_var_0001.csv
format = columns
x_index_in_file = 5
y_index_in_file = 2
xy_in_file_only = false
[]
[sigma_cr1]
type = PiecewiseLinear
data_file = CrFe_sigma_out_var_0001.csv
format = columns
x_index_in_file = 5
y_index_in_file = 3
xy_in_file_only = false
[]
[sigma_cr2]
type = PiecewiseLinear
data_file = CrFe_sigma_out_var_0001.csv
format = columns
x_index_in_file = 5
y_index_in_file = 4
xy_in_file_only = false
[]
[]
[Variables]
# order parameters
[eta1]
order = FIRST
family = LAGRANGE
initial_condition = 0.5
[]
[eta2]
order = FIRST
family = LAGRANGE
initial_condition = 0.5
[]
# solute concentration
[cCr]
order = FIRST
family = LAGRANGE
[InitialCondition]
type = FunctionIC
function = '(x+25)/50*0.5+0.1'
[]
[]
# sublattice concentrations
[BCC_CR]
initial_condition = 0.45
[]
[SIGMA_0CR]
[InitialCondition]
type = CoupledValueFunctionIC
function = sigma_cr0
v = cCr
variable = SIGMA_0CR
[]
[]
[SIGMA_1CR]
[InitialCondition]
type = CoupledValueFunctionIC
function = sigma_cr1
v = cCr
variable = SIGMA_1CR
[]
[]
[SIGMA_2CR]
[InitialCondition]
type = CoupledValueFunctionIC
function = sigma_cr2
v = cCr
variable = SIGMA_2CR
[]
[]
# Lagrange multiplier
[lambda]
[]
[]
[Materials]
# CALPHAD free energies
[F_BCC_A2]
type = DerivativeParsedMaterial
property_name = F_BCC_A2
outputs = exodus
output_properties = F_BCC_A2
expression = 'BCC_FE:=1-BCC_CR; G := 8.3145*T*(1.0*if(BCC_CR > 1.0e-15,BCC_CR*log(BCC_CR),0) + '
'1.0*if(BCC_FE > 1.0e-15,BCC_FE*plog(BCC_FE,eps),0) + 3.0*if(BCC_VA > '
'1.0e-15,BCC_VA*log(BCC_VA),0))/(BCC_CR + BCC_FE) + 8.3145*T*if(T < '
'548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - 932.5*BCC_CR*BCC_FE*BCC_VA + '
'311.5*BCC_CR*BCC_VA - '
'1043.0*BCC_FE*BCC_VA,-8.13674105561218e-49*T^15/(0.525599232981783*BCC_CR*BCC_FE*BCC_'
'VA*(BCC_CR - BCC_FE) - 0.894055608820709*BCC_CR*BCC_FE*BCC_VA + '
'0.298657718120805*BCC_CR*BCC_VA - BCC_FE*BCC_VA + 9.58772770853308e-13)^15 - '
'4.65558036243985e-30*T^9/(0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA + 0.298657718120805*BCC_CR*BCC_VA - '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^9 - '
'1.3485349181899e-10*T^3/(0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA + 0.298657718120805*BCC_CR*BCC_VA - '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^3 + 1 - '
'0.905299382744392*(548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - '
'932.5*BCC_CR*BCC_FE*BCC_VA + 311.5*BCC_CR*BCC_VA - 1043.0*BCC_FE*BCC_VA + '
'1.0e-9)/T,if(T < -548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
'932.5*BCC_CR*BCC_FE*BCC_VA - 311.5*BCC_CR*BCC_VA + '
'1043.0*BCC_FE*BCC_VA,-8.13674105561218e-49*T^15/(-0.525599232981783*BCC_CR*BCC_FE*BCC'
'_VA*(BCC_CR - BCC_FE) + 0.894055608820709*BCC_CR*BCC_FE*BCC_VA - '
'0.298657718120805*BCC_CR*BCC_VA + BCC_FE*BCC_VA + 9.58772770853308e-13)^15 - '
'4.65558036243985e-30*T^9/(-0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) '
'+ 0.894055608820709*BCC_CR*BCC_FE*BCC_VA - 0.298657718120805*BCC_CR*BCC_VA + '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^9 - '
'1.3485349181899e-10*T^3/(-0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA - 0.298657718120805*BCC_CR*BCC_VA + '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^3 + 1 - '
'0.905299382744392*(-548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
'932.5*BCC_CR*BCC_FE*BCC_VA - 311.5*BCC_CR*BCC_VA + 1043.0*BCC_FE*BCC_VA + '
'1.0e-9)/T,if(T > -548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
'932.5*BCC_CR*BCC_FE*BCC_VA - 311.5*BCC_CR*BCC_VA + 1043.0*BCC_FE*BCC_VA & '
'548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - 932.5*BCC_CR*BCC_FE*BCC_VA + '
'311.5*BCC_CR*BCC_VA - 1043.0*BCC_FE*BCC_VA < '
'0,-79209031311018.7*(-0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA - 0.298657718120805*BCC_CR*BCC_VA + '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^5/T^5 - '
'3.83095660520737e+42*(-0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA - 0.298657718120805*BCC_CR*BCC_VA + '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^15/T^15 - '
'1.22565886734485e+72*(-0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA - 0.298657718120805*BCC_CR*BCC_VA + '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^25/T^25,if(T > '
'548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - 932.5*BCC_CR*BCC_FE*BCC_VA + '
'311.5*BCC_CR*BCC_VA - 1043.0*BCC_FE*BCC_VA & 548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - '
'BCC_FE) - 932.5*BCC_CR*BCC_FE*BCC_VA + 311.5*BCC_CR*BCC_VA - 1043.0*BCC_FE*BCC_VA > '
'0,-79209031311018.7*(0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA + 0.298657718120805*BCC_CR*BCC_VA - '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^5/T^5 - '
'3.83095660520737e+42*(0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA + 0.298657718120805*BCC_CR*BCC_VA - '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^15/T^15 - '
'1.22565886734485e+72*(0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA + 0.298657718120805*BCC_CR*BCC_VA - '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^25/T^25,0))))*log((2.15*BCC_CR*BCC_FE*BCC_VA - '
'0.008*BCC_CR*BCC_VA + 2.22*BCC_FE*BCC_VA)*if(2.15*BCC_CR*BCC_FE*BCC_VA - '
'0.008*BCC_CR*BCC_VA + 2.22*BCC_FE*BCC_VA <= 0,-1.0,1.0) + 1)/(BCC_CR + BCC_FE) + '
'1.0*(BCC_CR*BCC_VA*if(T >= 298.15 & T < 2180.0,139250.0*1/T - 26.908*T*log(T) + '
'157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < '
'6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) + '
'BCC_FE*BCC_VA*if(T >= 298.15 & T < 1811.0,77358.5*1/T - 23.5143*T*log(T) + 124.134*T '
'- 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= 1811.0 & T < '
'6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - 25383.581,0)))/(BCC_CR '
'+ BCC_FE) + 1.0*(BCC_CR*BCC_FE*BCC_VA*(500.0 - 1.5*T)*(BCC_CR - BCC_FE) + '
'BCC_CR*BCC_FE*BCC_VA*(24600.0 - 14.98*T) + BCC_CR*BCC_FE*BCC_VA*(9.15*T - '
'14000.0)*(BCC_CR - BCC_FE)^2)/(BCC_CR + BCC_FE); G/100000'
coupled_variables = 'BCC_CR'
constant_names = 'BCC_VA T eps'
constant_expressions = '1 1000 0.01'
[]
[F_SIGMA]
type = DerivativeParsedMaterial
property_name = F_SIGMA
outputs = exodus
output_properties = F_SIGMA
expression = 'SIGMA_0FE := 1-SIGMA_0CR; SIGMA_1FE := 1-SIGMA_1CR; SIGMA_2FE := 1-SIGMA_2CR; G := '
'8.3145*T*(10.0*if(SIGMA_0CR > 1.0e-15,SIGMA_0CR*plog(SIGMA_0CR,eps),0) + '
'10.0*if(SIGMA_0FE > 1.0e-15,SIGMA_0FE*plog(SIGMA_0FE,eps),0) + 4.0*if(SIGMA_1CR > '
'1.0e-15,SIGMA_1CR*plog(SIGMA_1CR,eps),0) + 4.0*if(SIGMA_1FE > '
'1.0e-15,SIGMA_1FE*plog(SIGMA_1FE,eps),0) + 16.0*if(SIGMA_2CR > '
'1.0e-15,SIGMA_2CR*plog(SIGMA_2CR,eps),0) + 16.0*if(SIGMA_2FE > '
'1.0e-15,SIGMA_2FE*plog(SIGMA_2FE,eps),0))/(10.0*SIGMA_0CR + 10.0*SIGMA_0FE + '
'4.0*SIGMA_1CR + 4.0*SIGMA_1FE + 16.0*SIGMA_2CR + 16.0*SIGMA_2FE) + '
'(SIGMA_0FE*SIGMA_1CR*SIGMA_2CR*SIGMA_2FE*(-70.0*T - 170400.0) + '
'SIGMA_0FE*SIGMA_1FE*SIGMA_2CR*SIGMA_2FE*(-10.0*T - 330839.0))/(10.0*SIGMA_0CR + '
'10.0*SIGMA_0FE + 4.0*SIGMA_1CR + 4.0*SIGMA_1FE + 16.0*SIGMA_2CR + 16.0*SIGMA_2FE) + '
'(SIGMA_0CR*SIGMA_1CR*SIGMA_2CR*(30.0*if(T >= 298.15 & T < 2180.0,139250.0*1/T - '
'26.908*T*log(T) + 157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= '
'2180.0 & T < 6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) '
'+ 132000.0) + SIGMA_0CR*SIGMA_1CR*SIGMA_2FE*(-110.0*T + 16.0*if(T >= 298.15 & T < '
'1811.0,77358.5*1/T - 23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - '
'5.89269e-8*T^3.0 + 1225.7,if(T >= 1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - '
'46.0*T*log(T) + 299.31255*T - 25383.581,0)) + 14.0*if(T >= 298.15 & T < '
'2180.0,139250.0*1/T - 26.908*T*log(T) + 157.48*T + 0.00189435*T^2.0 - '
'1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < 6000.0,-2.88526e+32*T^(-9.0) - '
'50.0*T*log(T) + 344.18*T - 34869.344,0)) + 123500.0) + '
'SIGMA_0CR*SIGMA_1FE*SIGMA_2CR*(4.0*if(T >= 298.15 & T < 1811.0,77358.5*1/T - '
'23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= '
'1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - '
'25383.581,0)) + 26.0*if(T >= 298.15 & T < 2180.0,139250.0*1/T - 26.908*T*log(T) + '
'157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < '
'6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) + 140486.0) '
'+ SIGMA_0CR*SIGMA_1FE*SIGMA_2FE*(20.0*if(T >= 298.15 & T < 1811.0,77358.5*1/T - '
'23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= '
'1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - '
'25383.581,0)) + 10.0*if(T >= 298.15 & T < 2180.0,139250.0*1/T - 26.908*T*log(T) + '
'157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < '
'6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) + 148800.0) '
'+ SIGMA_0FE*SIGMA_1CR*SIGMA_2CR*(10.0*if(T >= 298.15 & T < 1811.0,77358.5*1/T - '
'23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= '
'1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - '
'25383.581,0)) + 20.0*if(T >= 298.15 & T < 2180.0,139250.0*1/T - 26.908*T*log(T) + '
'157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < '
'6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) + 56200.0) + '
'SIGMA_0FE*SIGMA_1CR*SIGMA_2FE*(26.0*if(T >= 298.15 & T < 1811.0,77358.5*1/T - '
'23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= '
'1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - '
'25383.581,0)) + 4.0*if(T >= 298.15 & T < 2180.0,139250.0*1/T - 26.908*T*log(T) + '
'157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < '
'6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) + 152700.0) '
'+ SIGMA_0FE*SIGMA_1FE*SIGMA_2CR*(14.0*if(T >= 298.15 & T < 1811.0,77358.5*1/T - '
'23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= '
'1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - '
'25383.581,0)) + 16.0*if(T >= 298.15 & T < 2180.0,139250.0*1/T - 26.908*T*log(T) + '
'157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < '
'6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) + 46200.0) + '
'SIGMA_0FE*SIGMA_1FE*SIGMA_2FE*(30.0*if(T >= 298.15 & T < 1811.0,77358.5*1/T - '
'23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= '
'1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - '
'25383.581,0)) + 173333.0))/(10.0*SIGMA_0CR + 10.0*SIGMA_0FE + 4.0*SIGMA_1CR + '
'4.0*SIGMA_1FE + 16.0*SIGMA_2CR + 16.0*SIGMA_2FE); G/100000'
coupled_variables = 'SIGMA_0CR SIGMA_1CR SIGMA_2CR'
constant_names = 'T eps'
constant_expressions = '1000 0.01'
[]
# h(eta)
[h1]
type = SwitchingFunctionMaterial
function_name = h1
h_order = HIGH
eta = eta1
[]
[h2]
type = SwitchingFunctionMaterial
function_name = h2
h_order = HIGH
eta = eta2
[]
# g(eta)
[g1]
type = BarrierFunctionMaterial
function_name = g1
g_order = SIMPLE
eta = eta1
[]
[g2]
type = BarrierFunctionMaterial
function_name = g2
g_order = SIMPLE
eta = eta2
[]
# constant properties
[constants]
type = GenericConstantMaterial
prop_names = 'D L kappa'
prop_values = '10 1 0.1 '
[]
# Coefficients for diffusion equation
[Dh1]
type = DerivativeParsedMaterial
material_property_names = 'D h1(eta1)'
expression = D*h1
property_name = Dh1
coupled_variables = eta1
derivative_order = 1
[]
[Dh2a]
type = DerivativeParsedMaterial
material_property_names = 'D h2(eta2)'
expression = D*h2*10/30
property_name = Dh2a
coupled_variables = eta2
derivative_order = 1
[]
[Dh2b]
type = DerivativeParsedMaterial
material_property_names = 'D h2(eta2)'
expression = D*h2*4/30
property_name = Dh2b
coupled_variables = eta2
derivative_order = 1
[]
[Dh2c]
type = DerivativeParsedMaterial
material_property_names = 'D h2(eta2)'
expression = D*h2*16/30
property_name = Dh2c
coupled_variables = eta2
derivative_order = 1
[]
[]
[Kernels]
#Kernels for diffusion equation
[diff_time]
type = TimeDerivative
variable = cCr
[]
[diff_c1]
type = MatDiffusion
variable = cCr
diffusivity = Dh1
v = BCC_CR
args = eta1
[]
[diff_c2a]
type = MatDiffusion
variable = cCr
diffusivity = Dh2a
v = SIGMA_0CR
args = eta2
[]
[diff_c2b]
type = MatDiffusion
variable = cCr
diffusivity = Dh2b
v = SIGMA_1CR
args = eta2
[]
[diff_c2c]
type = MatDiffusion
variable = cCr
diffusivity = Dh2c
v = SIGMA_2CR
args = eta2
[]
# enforce pointwise equality of chemical potentials
[chempot1a2a]
# The BCC phase has only one sublattice
# we tie it to the first sublattice with site fraction 10/(10+4+16) in the sigma phase
type = KKSPhaseChemicalPotential
variable = BCC_CR
cb = SIGMA_0CR
kb = '${fparse 10/30}'
fa_name = F_BCC_A2
fb_name = F_SIGMA
args_b = 'SIGMA_1CR SIGMA_2CR'
[]
[chempot2a2b]
# This kernel ties the first two sublattices in the sigma phase together
type = SLKKSChemicalPotential
variable = SIGMA_0CR
a = 10
cs = SIGMA_1CR
as = 4
F = F_SIGMA
coupled_variables = 'SIGMA_2CR'
[]
[chempot2b2c]
# This kernel ties the remaining two sublattices in the sigma phase together
type = SLKKSChemicalPotential
variable = SIGMA_1CR
a = 4
cs = SIGMA_2CR
as = 16
F = F_SIGMA
coupled_variables = 'SIGMA_0CR'
[]
[phaseconcentration]
# This kernel ties the sum of the sublattice concentrations to the global concentration cCr
type = SLKKSMultiPhaseConcentration
variable = SIGMA_2CR
c = cCr
ns = '1 3'
as = '1 10 4 16'
cs = 'BCC_CR SIGMA_0CR SIGMA_1CR SIGMA_2CR'
h_names = 'h1 h2'
eta = 'eta1 eta2'
[]
# Kernels for Allen-Cahn equation for eta1
[deta1dt]
type = TimeDerivative
variable = eta1
[]
[ACBulkF1]
type = KKSMultiACBulkF
variable = eta1
Fj_names = 'F_BCC_A2 F_SIGMA'
hj_names = 'h1 h2'
gi_name = g1
eta_i = eta1
wi = 0.1
coupled_variables = 'BCC_CR SIGMA_0CR SIGMA_1CR SIGMA_2CR eta2'
[]
[ACBulkC1]
type = SLKKSMultiACBulkC
variable = eta1
F = F_BCC_A2
c = BCC_CR
ns = '1 3'
as = '1 10 4 16'
cs = 'BCC_CR SIGMA_0CR SIGMA_1CR SIGMA_2CR'
h_names = 'h1 h2'
eta = 'eta1 eta2'
[]
[ACInterface1]
type = ACInterface
variable = eta1
kappa_name = kappa
[]
[lagrange1]
type = SwitchingFunctionConstraintEta
variable = eta1
h_name = h1
lambda = lambda
coupled_variables = 'eta2'
[]
# Kernels for Allen-Cahn equation for eta1
[deta2dt]
type = TimeDerivative
variable = eta2
[]
[ACBulkF2]
type = KKSMultiACBulkF
variable = eta2
Fj_names = 'F_BCC_A2 F_SIGMA'
hj_names = 'h1 h2'
gi_name = g2
eta_i = eta2
wi = 0.1
coupled_variables = 'BCC_CR SIGMA_0CR SIGMA_1CR SIGMA_2CR eta1'
[]
[ACBulkC2]
type = SLKKSMultiACBulkC
variable = eta2
F = F_BCC_A2
c = BCC_CR
ns = '1 3'
as = '1 10 4 16'
cs = 'BCC_CR SIGMA_0CR SIGMA_1CR SIGMA_2CR'
h_names = 'h1 h2'
eta = 'eta1 eta2'
[]
[ACInterface2]
type = ACInterface
variable = eta2
kappa_name = kappa
[]
[lagrange2]
type = SwitchingFunctionConstraintEta
variable = eta2
h_name = h2
lambda = lambda
coupled_variables = 'eta1'
[]
# Lagrange-multiplier constraint kernel for lambda
[lagrange]
type = SwitchingFunctionConstraintLagrange
variable = lambda
h_names = 'h1 h2'
etas = 'eta1 eta2'
epsilon = 1e-6
[]
[]
[AuxKernels]
[GlobalFreeEnergy]
type = KKSMultiFreeEnergy
variable = Fglobal
Fj_names = 'F_BCC_A2 F_SIGMA'
hj_names = 'h1 h2'
gj_names = 'g1 g2'
interfacial_vars = 'eta1 eta2'
kappa_names = 'kappa kappa'
w = 0.1
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
line_search = none
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -ksp_gmres_restart'
petsc_options_value = 'asm lu nonzero 30'
l_max_its = 100
nl_max_its = 20
nl_abs_tol = 1e-10
end_time = 10000
[TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 12
iteration_window = 2
growth_factor = 1.5
cutback_factor = 0.7
dt = 0.1
[]
[]
[VectorPostprocessors]
[var]
type = LineValueSampler
start_point = '-25 0 0'
end_point = '25 0 0'
variable = 'cCr eta1 eta2 SIGMA_0CR SIGMA_1CR SIGMA_2CR'
num_points = 151
sort_by = id
execute_on = 'initial timestep_end'
[]
[mat]
type = LineMaterialRealSampler
start = '-25 0 0'
end = '25 0 0'
property = 'F_BCC_A2 F_SIGMA'
sort_by = id
execute_on = 'initial timestep_end'
[]
[]
[Postprocessors]
[F]
type = ElementIntegralVariablePostprocessor
variable = Fglobal
execute_on = 'initial timestep_end'
[]
[cmin]
type = NodalExtremeValue
value_type = min
variable = cCr
execute_on = 'initial timestep_end'
[]
[cmax]
type = NodalExtremeValue
value_type = max
variable = cCr
execute_on = 'initial timestep_end'
[]
[ctotal]
type = ElementIntegralVariablePostprocessor
variable = cCr
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
exodus = true
print_linear_residuals = false
csv = true
perf_graph = true
[]
(moose/modules/phase_field/examples/slkks/CrFe.i)References
- Aurélie Jacob, Erwin Povoden-Karadeniz, and Ernst Kozeschnik.
Revised thermodynamic description of the fe-cr system based on an improved sublattice model of the σ phase.
Calphad, 60:16–28, 2018.[BibTeX]
- D. Schwen, C. Jiang, and L.K. Aagesen.
A sublattice phase-field model for direct calphad database coupling.
Computational Materials Science, 195:110466, 2021.
URL: https://www.sciencedirect.com/science/article/pii/S0927025621001919, doi:https://doi.org/10.1016/j.commatsci.2021.110466.[BibTeX]