Sublattice KKS model

The sublattice Kim-Kim-Suzuki (SLKKS) Schwen et al. (2021) model is an extension of the original KKS model incorporating an additional equal chemical potential constraint among the sublattice concentration in each phase.

As such each component in the system will have corresponding phase concentrations, which are split up into per-sublattice concentrations.

Nomenclature

indexes a component, a phase, and a sublattice in the given phase. is the fraction of sublattice sites in phase .

Sublattice equilibrium

All sublattice pairs and in a given phase are assumed to be always in equilibrium, thus

This condition is enforced by the SLKKSChemicalPotential kernel.


[chempot1a1b]
  type = SLKKSChemicalPotential
  variable = Cijk
  k        = ajk
  cs       = Cijk'
  ks       = ajk'
  F  = Fj
[]

With sublattices in a phase such kernels are required. That leaves one sublattice concentration variable in a given phase to be covered by a kernel.

Phase equilibrium

At the same time the original KKS model chemical potential equilibria still hold

meaning that sublattice chemical potentials (corrected for the sublattice site fractions) must be in equilibrium across phases.

That remaining sublattice concentration will couple to the next phase using a KKSPhaseChemicalPotential kernel.


[chempot1c2a]
  type = KKSPhaseChemicalPotential
  variable = Cijk
  ka = ajk
  fa_name = Fj
  cb = Cij'k
  kb = aj'k
  fb_name = Fj'
[]

Note that in this kernel the ajk and aj'k must be true site fractions ranging from 0 to 1.

Mass transport

The global concentration variables govern the mass transport along chemical potential gradients.

(1)

This equation can be implemented using multiple MatDiffusion kernels in MOOSE. To illustrate this we can re-order the summation to yield

(2)

This means we need to add a MatDiffusion kernel for sublattice in all phases, each operating on the variable . We use the "v" parameter to specify as the variable to take the gradient of (rather than ). The effective diffusivity passed into the kernel is , which can be provided by a DerivativeParsedMaterial


[D'i]
  type = DerivativeParsedMaterial
  f_name = D'i
  function = Di*hi*ajk
  material_property_names = 'Di hi'
  constant_names = ajk
  constant_expressions = 1/3
[]

Here we assume the site fraction of the current sublattice to be .

commentnote:Extension to phase/sublattice dependent diffusivities

The derivation should be check to see if a phase dependent concentration or even sublattice dependent concentration is feasible.

Example

An open TDB file for the Fe-Cr system was graciously provided by Aurélie Jacob at TU Wien, based on the work in Jacob et al. (2018).

The TDB file can be converted into MOOSE DerivativeParsedMaterial syntax using the free_energy.py script.


mamba activate pycalphad
cd $MOOSE_DIR/modules/phase_field/examples/slkks
../../../../python/calphad/free_energy.py CrFe_Jacob.tdb BCC_A2 SIGMA

The example directory also contains an Jupyter notebook to visualize the phase diagram for the supplied Fe-Cr thermodynamic database file and the simulation results,

#
# SLKKS two phase example for the BCC and SIGMA phases. The sigma phase contains
# multiple sublattices. Free energy from
# Jacob, Aurelie, Erwin Povoden-Karadeniz, and Ernst Kozeschnik. "Revised thermodynamic
# description of the Fe-Cr system based on an improved sublattice model of the sigma phase."
# Calphad 60 (2018): 16-28.
#
# In this simulation we consider diffusion (Cahn-Hilliard) and phase transformation.
#
# This example requires CrFe_sigma_out_var_0001.csv file, which generated by first
# running the CrFe_sigma.i input file.

[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    nx = 160
    ny = 1
    nz = 0
    xmin = -25
    xmax = 25
    ymin = -2.5
    ymax = 2.5
    elem_type = QUAD4
  []
[]

[AuxVariables]
  [Fglobal]
    order = CONSTANT
    family = MONOMIAL
  []
[]

[Functions]
  [sigma_cr0]
    type = PiecewiseLinear
    data_file = CrFe_sigma_out_var_0001.csv
    format = columns
    x_index_in_file = 5
    y_index_in_file = 2
    xy_in_file_only = false
  []
  [sigma_cr1]
    type = PiecewiseLinear
    data_file = CrFe_sigma_out_var_0001.csv
    format = columns
    x_index_in_file = 5
    y_index_in_file = 3
    xy_in_file_only = false
  []
  [sigma_cr2]
    type = PiecewiseLinear
    data_file = CrFe_sigma_out_var_0001.csv
    format = columns
    x_index_in_file = 5
    y_index_in_file = 4
    xy_in_file_only = false
  []
[]

[Variables]
  # order parameters
  [eta1]
    order = FIRST
    family = LAGRANGE
    initial_condition = 0.5
  []
  [eta2]
    order = FIRST
    family = LAGRANGE
    initial_condition = 0.5
  []

  # solute concentration
  [cCr]
    order = FIRST
    family = LAGRANGE
    [InitialCondition]
      type = FunctionIC
      function = '(x+25)/50*0.5+0.1'
    []
  []

  # sublattice concentrations
  [BCC_CR]
    initial_condition = 0.45
  []
  [SIGMA_0CR]
    [InitialCondition]
      type = CoupledValueFunctionIC
      function = sigma_cr0
      v = cCr
      variable = SIGMA_0CR
    []
  []
  [SIGMA_1CR]
    [InitialCondition]
      type = CoupledValueFunctionIC
      function = sigma_cr1
      v = cCr
      variable = SIGMA_1CR
    []
  []
  [SIGMA_2CR]
    [InitialCondition]
      type = CoupledValueFunctionIC
      function = sigma_cr2
      v = cCr
      variable = SIGMA_2CR
    []
  []
  # Lagrange multiplier
  [lambda]
  []
[]

[Materials]
  # CALPHAD free energies
  [F_BCC_A2]
    type = DerivativeParsedMaterial
    property_name = F_BCC_A2
    outputs = exodus
    output_properties = F_BCC_A2
    expression = 'BCC_FE:=1-BCC_CR; G := 8.3145*T*(1.0*if(BCC_CR > 1.0e-15,BCC_CR*log(BCC_CR),0) + '
               '1.0*if(BCC_FE > 1.0e-15,BCC_FE*plog(BCC_FE,eps),0) + 3.0*if(BCC_VA > '
               '1.0e-15,BCC_VA*log(BCC_VA),0))/(BCC_CR + BCC_FE) + 8.3145*T*if(T < '
               '548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - 932.5*BCC_CR*BCC_FE*BCC_VA + '
               '311.5*BCC_CR*BCC_VA - '
               '1043.0*BCC_FE*BCC_VA,-8.13674105561218e-49*T^15/(0.525599232981783*BCC_CR*BCC_FE*BCC_'
               'VA*(BCC_CR - BCC_FE) - 0.894055608820709*BCC_CR*BCC_FE*BCC_VA + '
               '0.298657718120805*BCC_CR*BCC_VA - BCC_FE*BCC_VA + 9.58772770853308e-13)^15 - '
               '4.65558036243985e-30*T^9/(0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - '
               '0.894055608820709*BCC_CR*BCC_FE*BCC_VA + 0.298657718120805*BCC_CR*BCC_VA - '
               'BCC_FE*BCC_VA + 9.58772770853308e-13)^9 - '
               '1.3485349181899e-10*T^3/(0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - '
               '0.894055608820709*BCC_CR*BCC_FE*BCC_VA + 0.298657718120805*BCC_CR*BCC_VA - '
               'BCC_FE*BCC_VA + 9.58772770853308e-13)^3 + 1 - '
               '0.905299382744392*(548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - '
               '932.5*BCC_CR*BCC_FE*BCC_VA + 311.5*BCC_CR*BCC_VA - 1043.0*BCC_FE*BCC_VA + '
               '1.0e-9)/T,if(T < -548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
               '932.5*BCC_CR*BCC_FE*BCC_VA - 311.5*BCC_CR*BCC_VA + '
               '1043.0*BCC_FE*BCC_VA,-8.13674105561218e-49*T^15/(-0.525599232981783*BCC_CR*BCC_FE*BCC'
               '_VA*(BCC_CR - BCC_FE) + 0.894055608820709*BCC_CR*BCC_FE*BCC_VA - '
               '0.298657718120805*BCC_CR*BCC_VA + BCC_FE*BCC_VA + 9.58772770853308e-13)^15 - '
               '4.65558036243985e-30*T^9/(-0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) '
               '+ 0.894055608820709*BCC_CR*BCC_FE*BCC_VA - 0.298657718120805*BCC_CR*BCC_VA + '
               'BCC_FE*BCC_VA + 9.58772770853308e-13)^9 - '
               '1.3485349181899e-10*T^3/(-0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
               '0.894055608820709*BCC_CR*BCC_FE*BCC_VA - 0.298657718120805*BCC_CR*BCC_VA + '
               'BCC_FE*BCC_VA + 9.58772770853308e-13)^3 + 1 - '
               '0.905299382744392*(-548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
               '932.5*BCC_CR*BCC_FE*BCC_VA - 311.5*BCC_CR*BCC_VA + 1043.0*BCC_FE*BCC_VA + '
               '1.0e-9)/T,if(T > -548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
               '932.5*BCC_CR*BCC_FE*BCC_VA - 311.5*BCC_CR*BCC_VA + 1043.0*BCC_FE*BCC_VA & '
               '548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - 932.5*BCC_CR*BCC_FE*BCC_VA + '
               '311.5*BCC_CR*BCC_VA - 1043.0*BCC_FE*BCC_VA < '
               '0,-79209031311018.7*(-0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
               '0.894055608820709*BCC_CR*BCC_FE*BCC_VA - 0.298657718120805*BCC_CR*BCC_VA + '
               'BCC_FE*BCC_VA + 9.58772770853308e-13)^5/T^5 - '
               '3.83095660520737e+42*(-0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
               '0.894055608820709*BCC_CR*BCC_FE*BCC_VA - 0.298657718120805*BCC_CR*BCC_VA + '
               'BCC_FE*BCC_VA + 9.58772770853308e-13)^15/T^15 - '
               '1.22565886734485e+72*(-0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
               '0.894055608820709*BCC_CR*BCC_FE*BCC_VA - 0.298657718120805*BCC_CR*BCC_VA + '
               'BCC_FE*BCC_VA + 9.58772770853308e-13)^25/T^25,if(T > '
               '548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - 932.5*BCC_CR*BCC_FE*BCC_VA + '
               '311.5*BCC_CR*BCC_VA - 1043.0*BCC_FE*BCC_VA & 548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - '
               'BCC_FE) - 932.5*BCC_CR*BCC_FE*BCC_VA + 311.5*BCC_CR*BCC_VA - 1043.0*BCC_FE*BCC_VA > '
               '0,-79209031311018.7*(0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - '
               '0.894055608820709*BCC_CR*BCC_FE*BCC_VA + 0.298657718120805*BCC_CR*BCC_VA - '
               'BCC_FE*BCC_VA + 9.58772770853308e-13)^5/T^5 - '
               '3.83095660520737e+42*(0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - '
               '0.894055608820709*BCC_CR*BCC_FE*BCC_VA + 0.298657718120805*BCC_CR*BCC_VA - '
               'BCC_FE*BCC_VA + 9.58772770853308e-13)^15/T^15 - '
               '1.22565886734485e+72*(0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - '
               '0.894055608820709*BCC_CR*BCC_FE*BCC_VA + 0.298657718120805*BCC_CR*BCC_VA - '
               'BCC_FE*BCC_VA + 9.58772770853308e-13)^25/T^25,0))))*log((2.15*BCC_CR*BCC_FE*BCC_VA - '
               '0.008*BCC_CR*BCC_VA + 2.22*BCC_FE*BCC_VA)*if(2.15*BCC_CR*BCC_FE*BCC_VA - '
               '0.008*BCC_CR*BCC_VA + 2.22*BCC_FE*BCC_VA <= 0,-1.0,1.0) + 1)/(BCC_CR + BCC_FE) + '
               '1.0*(BCC_CR*BCC_VA*if(T >= 298.15 & T < 2180.0,139250.0*1/T - 26.908*T*log(T) + '
               '157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < '
               '6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) + '
               'BCC_FE*BCC_VA*if(T >= 298.15 & T < 1811.0,77358.5*1/T - 23.5143*T*log(T) + 124.134*T '
               '- 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= 1811.0 & T < '
               '6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - 25383.581,0)))/(BCC_CR '
               '+ BCC_FE) + 1.0*(BCC_CR*BCC_FE*BCC_VA*(500.0 - 1.5*T)*(BCC_CR - BCC_FE) + '
               'BCC_CR*BCC_FE*BCC_VA*(24600.0 - 14.98*T) + BCC_CR*BCC_FE*BCC_VA*(9.15*T - '
               '14000.0)*(BCC_CR - BCC_FE)^2)/(BCC_CR + BCC_FE); G/100000'
    coupled_variables = 'BCC_CR'
    constant_names = 'BCC_VA T eps'
    constant_expressions = '1 1000 0.01'
  []

  [F_SIGMA]
    type = DerivativeParsedMaterial
    property_name = F_SIGMA
    outputs = exodus
    output_properties = F_SIGMA
    expression = 'SIGMA_0FE := 1-SIGMA_0CR; SIGMA_1FE := 1-SIGMA_1CR; SIGMA_2FE := 1-SIGMA_2CR; G := '
               '8.3145*T*(10.0*if(SIGMA_0CR > 1.0e-15,SIGMA_0CR*plog(SIGMA_0CR,eps),0) + '
               '10.0*if(SIGMA_0FE > 1.0e-15,SIGMA_0FE*plog(SIGMA_0FE,eps),0) + 4.0*if(SIGMA_1CR > '
               '1.0e-15,SIGMA_1CR*plog(SIGMA_1CR,eps),0) + 4.0*if(SIGMA_1FE > '
               '1.0e-15,SIGMA_1FE*plog(SIGMA_1FE,eps),0) + 16.0*if(SIGMA_2CR > '
               '1.0e-15,SIGMA_2CR*plog(SIGMA_2CR,eps),0) + 16.0*if(SIGMA_2FE > '
               '1.0e-15,SIGMA_2FE*plog(SIGMA_2FE,eps),0))/(10.0*SIGMA_0CR + 10.0*SIGMA_0FE + '
               '4.0*SIGMA_1CR + 4.0*SIGMA_1FE + 16.0*SIGMA_2CR + 16.0*SIGMA_2FE) + '
               '(SIGMA_0FE*SIGMA_1CR*SIGMA_2CR*SIGMA_2FE*(-70.0*T - 170400.0) + '
               'SIGMA_0FE*SIGMA_1FE*SIGMA_2CR*SIGMA_2FE*(-10.0*T - 330839.0))/(10.0*SIGMA_0CR + '
               '10.0*SIGMA_0FE + 4.0*SIGMA_1CR + 4.0*SIGMA_1FE + 16.0*SIGMA_2CR + 16.0*SIGMA_2FE) + '
               '(SIGMA_0CR*SIGMA_1CR*SIGMA_2CR*(30.0*if(T >= 298.15 & T < 2180.0,139250.0*1/T - '
               '26.908*T*log(T) + 157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= '
               '2180.0 & T < 6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) '
               '+ 132000.0) + SIGMA_0CR*SIGMA_1CR*SIGMA_2FE*(-110.0*T + 16.0*if(T >= 298.15 & T < '
               '1811.0,77358.5*1/T - 23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - '
               '5.89269e-8*T^3.0 + 1225.7,if(T >= 1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - '
               '46.0*T*log(T) + 299.31255*T - 25383.581,0)) + 14.0*if(T >= 298.15 & T < '
               '2180.0,139250.0*1/T - 26.908*T*log(T) + 157.48*T + 0.00189435*T^2.0 - '
               '1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < 6000.0,-2.88526e+32*T^(-9.0) - '
               '50.0*T*log(T) + 344.18*T - 34869.344,0)) + 123500.0) + '
               'SIGMA_0CR*SIGMA_1FE*SIGMA_2CR*(4.0*if(T >= 298.15 & T < 1811.0,77358.5*1/T - '
               '23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= '
               '1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - '
               '25383.581,0)) + 26.0*if(T >= 298.15 & T < 2180.0,139250.0*1/T - 26.908*T*log(T) + '
               '157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < '
               '6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) + 140486.0) '
               '+ SIGMA_0CR*SIGMA_1FE*SIGMA_2FE*(20.0*if(T >= 298.15 & T < 1811.0,77358.5*1/T - '
               '23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= '
               '1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - '
               '25383.581,0)) + 10.0*if(T >= 298.15 & T < 2180.0,139250.0*1/T - 26.908*T*log(T) + '
               '157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < '
               '6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) + 148800.0) '
               '+ SIGMA_0FE*SIGMA_1CR*SIGMA_2CR*(10.0*if(T >= 298.15 & T < 1811.0,77358.5*1/T - '
               '23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= '
               '1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - '
               '25383.581,0)) + 20.0*if(T >= 298.15 & T < 2180.0,139250.0*1/T - 26.908*T*log(T) + '
               '157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < '
               '6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) + 56200.0) + '
               'SIGMA_0FE*SIGMA_1CR*SIGMA_2FE*(26.0*if(T >= 298.15 & T < 1811.0,77358.5*1/T - '
               '23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= '
               '1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - '
               '25383.581,0)) + 4.0*if(T >= 298.15 & T < 2180.0,139250.0*1/T - 26.908*T*log(T) + '
               '157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < '
               '6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) + 152700.0) '
               '+ SIGMA_0FE*SIGMA_1FE*SIGMA_2CR*(14.0*if(T >= 298.15 & T < 1811.0,77358.5*1/T - '
               '23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= '
               '1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - '
               '25383.581,0)) + 16.0*if(T >= 298.15 & T < 2180.0,139250.0*1/T - 26.908*T*log(T) + '
               '157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < '
               '6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) + 46200.0) + '
               'SIGMA_0FE*SIGMA_1FE*SIGMA_2FE*(30.0*if(T >= 298.15 & T < 1811.0,77358.5*1/T - '
               '23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= '
               '1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - '
               '25383.581,0)) + 173333.0))/(10.0*SIGMA_0CR + 10.0*SIGMA_0FE + 4.0*SIGMA_1CR + '
               '4.0*SIGMA_1FE + 16.0*SIGMA_2CR + 16.0*SIGMA_2FE); G/100000'
    coupled_variables = 'SIGMA_0CR SIGMA_1CR SIGMA_2CR'
    constant_names = 'T eps'
    constant_expressions = '1000 0.01'
  []

  # h(eta)
  [h1]
    type = SwitchingFunctionMaterial
    function_name = h1
    h_order = HIGH
    eta = eta1
  []
  [h2]
    type = SwitchingFunctionMaterial
    function_name = h2
    h_order = HIGH
    eta = eta2
  []

  # g(eta)
  [g1]
    type = BarrierFunctionMaterial
    function_name = g1
    g_order = SIMPLE
    eta = eta1
  []
  [g2]
    type = BarrierFunctionMaterial
    function_name = g2
    g_order = SIMPLE
    eta = eta2
  []

  # constant properties
  [constants]
    type = GenericConstantMaterial
    prop_names = 'D   L   kappa'
    prop_values = '10  1   0.1  '
  []

  # Coefficients for diffusion equation
  [Dh1]
    type = DerivativeParsedMaterial
    material_property_names = 'D h1(eta1)'
    expression = D*h1
    property_name = Dh1
    coupled_variables = eta1
    derivative_order = 1
  []
  [Dh2a]
    type = DerivativeParsedMaterial
    material_property_names = 'D h2(eta2)'
    expression = D*h2*10/30
    property_name = Dh2a
    coupled_variables = eta2
    derivative_order = 1
  []
  [Dh2b]
    type = DerivativeParsedMaterial
    material_property_names = 'D h2(eta2)'
    expression = D*h2*4/30
    property_name = Dh2b
    coupled_variables = eta2
    derivative_order = 1
  []
  [Dh2c]
    type = DerivativeParsedMaterial
    material_property_names = 'D h2(eta2)'
    expression = D*h2*16/30
    property_name = Dh2c
    coupled_variables = eta2
    derivative_order = 1
  []
[]

[Kernels]
  #Kernels for diffusion equation
  [diff_time]
    type = TimeDerivative
    variable = cCr
  []
  [diff_c1]
    type = MatDiffusion
    variable = cCr
    diffusivity = Dh1
    v = BCC_CR
    args = eta1
  []
  [diff_c2a]
    type = MatDiffusion
    variable = cCr
    diffusivity = Dh2a
    v = SIGMA_0CR
    args = eta2
  []
  [diff_c2b]
    type = MatDiffusion
    variable = cCr
    diffusivity = Dh2b
    v = SIGMA_1CR
    args = eta2
  []
  [diff_c2c]
    type = MatDiffusion
    variable = cCr
    diffusivity = Dh2c
    v = SIGMA_2CR
    args = eta2
  []

  # enforce pointwise equality of chemical potentials
  [chempot1a2a]
    # The BCC phase has only one sublattice
    # we tie it to the first sublattice with site fraction 10/(10+4+16) in the sigma phase
    type = KKSPhaseChemicalPotential
    variable = BCC_CR
    cb = SIGMA_0CR
    kb = '${fparse 10/30}'
    fa_name = F_BCC_A2
    fb_name = F_SIGMA
    args_b = 'SIGMA_1CR SIGMA_2CR'
  []
  [chempot2a2b]
    # This kernel ties the first two sublattices in the sigma phase together
    type = SLKKSChemicalPotential
    variable = SIGMA_0CR
    a = 10
    cs = SIGMA_1CR
    as = 4
    F = F_SIGMA
    coupled_variables = 'SIGMA_2CR'
  []
  [chempot2b2c]
    # This kernel ties the remaining two sublattices in the sigma phase together
    type = SLKKSChemicalPotential
    variable = SIGMA_1CR
    a = 4
    cs = SIGMA_2CR
    as = 16
    F = F_SIGMA
    coupled_variables = 'SIGMA_0CR'
  []

  [phaseconcentration]
    # This kernel ties the sum of the sublattice concentrations to the global concentration cCr
    type = SLKKSMultiPhaseConcentration
    variable = SIGMA_2CR
    c = cCr
    ns = '1      3'
    as = '1      10        4         16'
    cs = 'BCC_CR SIGMA_0CR SIGMA_1CR SIGMA_2CR'
    h_names = 'h1   h2'
    eta = 'eta1 eta2'
  []

  # Kernels for Allen-Cahn equation for eta1
  [deta1dt]
    type = TimeDerivative
    variable = eta1
  []
  [ACBulkF1]
    type = KKSMultiACBulkF
    variable = eta1
    Fj_names = 'F_BCC_A2 F_SIGMA'
    hj_names = 'h1    h2'
    gi_name = g1
    eta_i = eta1
    wi = 0.1
    coupled_variables = 'BCC_CR SIGMA_0CR SIGMA_1CR SIGMA_2CR eta2'
  []
  [ACBulkC1]
    type = SLKKSMultiACBulkC
    variable = eta1
    F = F_BCC_A2
    c = BCC_CR
    ns = '1      3'
    as = '1      10        4         16'
    cs = 'BCC_CR SIGMA_0CR SIGMA_1CR SIGMA_2CR'
    h_names = 'h1   h2'
    eta = 'eta1 eta2'
  []
  [ACInterface1]
    type = ACInterface
    variable = eta1
    kappa_name = kappa
  []
  [lagrange1]
    type = SwitchingFunctionConstraintEta
    variable = eta1
    h_name = h1
    lambda = lambda
    coupled_variables = 'eta2'
  []

  # Kernels for Allen-Cahn equation for eta1
  [deta2dt]
    type = TimeDerivative
    variable = eta2
  []
  [ACBulkF2]
    type = KKSMultiACBulkF
    variable = eta2
    Fj_names = 'F_BCC_A2 F_SIGMA'
    hj_names = 'h1    h2'
    gi_name = g2
    eta_i = eta2
    wi = 0.1
    coupled_variables = 'BCC_CR SIGMA_0CR SIGMA_1CR SIGMA_2CR eta1'
  []
  [ACBulkC2]
    type = SLKKSMultiACBulkC
    variable = eta2
    F = F_BCC_A2
    c = BCC_CR
    ns = '1      3'
    as = '1      10        4         16'
    cs = 'BCC_CR SIGMA_0CR SIGMA_1CR SIGMA_2CR'
    h_names = 'h1   h2'
    eta = 'eta1 eta2'
  []
  [ACInterface2]
    type = ACInterface
    variable = eta2
    kappa_name = kappa
  []
  [lagrange2]
    type = SwitchingFunctionConstraintEta
    variable = eta2
    h_name = h2
    lambda = lambda
    coupled_variables = 'eta1'
  []

  # Lagrange-multiplier constraint kernel for lambda
  [lagrange]
    type = SwitchingFunctionConstraintLagrange
    variable = lambda
    h_names = 'h1   h2'
    etas = 'eta1 eta2'
    epsilon = 1e-6
  []
[]

[AuxKernels]
  [GlobalFreeEnergy]
    type = KKSMultiFreeEnergy
    variable = Fglobal
    Fj_names = 'F_BCC_A2 F_SIGMA'
    hj_names = 'h1 h2'
    gj_names = 'g1 g2'
    interfacial_vars = 'eta1 eta2'
    kappa_names = 'kappa kappa'
    w = 0.1
  []
[]

[Executioner]
  type = Transient
  solve_type = 'NEWTON'
  line_search = none

  petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -ksp_gmres_restart'
  petsc_options_value = 'asm      lu          nonzero                    30'

  l_max_its = 100
  nl_max_its = 20
  nl_abs_tol = 1e-10

  end_time = 10000

  [TimeStepper]
    type = IterationAdaptiveDT
    optimal_iterations = 12
    iteration_window = 2
    growth_factor = 1.5
    cutback_factor = 0.7
    dt = 0.1
  []
[]

[VectorPostprocessors]
  [var]
    type = LineValueSampler
    start_point = '-25 0 0'
    end_point = '25 0 0'
    variable = 'cCr eta1 eta2 SIGMA_0CR SIGMA_1CR SIGMA_2CR'
    num_points = 151
    sort_by = id
    execute_on = 'initial timestep_end'
  []
  [mat]
    type = LineMaterialRealSampler
    start = '-25 0 0'
    end = '25 0 0'
    property = 'F_BCC_A2 F_SIGMA'
    sort_by = id
    execute_on = 'initial timestep_end'
  []
[]

[Postprocessors]
  [F]
    type = ElementIntegralVariablePostprocessor
    variable = Fglobal
    execute_on = 'initial timestep_end'
  []
  [cmin]
    type = NodalExtremeValue
    value_type = min
    variable = cCr
    execute_on = 'initial timestep_end'
  []
  [cmax]
    type = NodalExtremeValue
    value_type = max
    variable = cCr
    execute_on = 'initial timestep_end'
  []
  [ctotal]
    type = ElementIntegralVariablePostprocessor
    variable = cCr
    execute_on = 'initial timestep_end'
  []
[]

[Outputs]
  exodus = true
  print_linear_residuals = false
  csv = true
  perf_graph = true
[]
(moose/modules/phase_field/examples/slkks/CrFe.i)

References

  1. Aurélie Jacob, Erwin Povoden-Karadeniz, and Ernst Kozeschnik. Revised thermodynamic description of the fe-cr system based on an improved sublattice model of the σ phase. Calphad, 60:16–28, 2018.[BibTeX]
  2. D. Schwen, C. Jiang, and L.K. Aagesen. A sublattice phase-field model for direct calphad database coupling. Computational Materials Science, 195:110466, 2021. URL: https://www.sciencedirect.com/science/article/pii/S0927025621001919, doi:https://doi.org/10.1016/j.commatsci.2021.110466.[BibTeX]