LoadingUnloadingDirichletBC

This class applies a loading/unloading BC. The load ramps up linearly until it reaches the load cap. Once the load cap is reached, the load cap is incremented and unlading begins. Once the unloaded indicator becomes negative, loading starts. If the load cap exceeds the ultimate load, the entire loading/unloading terminates, and the current simulation is terminated.

Example Input File Syntax

Input Parameters

  • boundaryThe list of boundary IDs from the mesh where this object applies

    C++ Type:std::vector<BoundaryName>

    Controllable:No

    Description:The list of boundary IDs from the mesh where this object applies

  • initial_load_capInitial cap of the loading. The load is decreased once it reaches the cap, the cap is then increased according to the load cap increment.

    C++ Type:double

    Controllable:No

    Description:Initial cap of the loading. The load is decreased once it reaches the cap, the cap is then increased according to the load cap increment.

  • load_cap_incrementThe amount to increase the load cap everytime it is reached.

    C++ Type:double

    Controllable:No

    Description:The amount to increase the load cap everytime it is reached.

  • load_stepThe amount to increase the load every step.

    C++ Type:double

    Controllable:No

    Description:The amount to increase the load every step.

  • ultimate_loadThe load, upon reached, to terminate the simulation.

    C++ Type:double

    Controllable:No

    Description:The load, upon reached, to terminate the simulation.

  • unloaded_indicatorA postprocessor whose value serves as an indicator for unloaded status. Once its value is below zero, the system is completely unloaded, and loading starts again.

    C++ Type:PostprocessorName

    Controllable:No

    Description:A postprocessor whose value serves as an indicator for unloaded status. Once its value is below zero, the system is completely unloaded, and loading starts again.

  • variableThe name of the variable that this residual object operates on

    C++ Type:NonlinearVariableName

    Controllable:No

    Description:The name of the variable that this residual object operates on

Required Parameters

  • diag_save_inThe name of auxiliary variables to save this BC's diagonal jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)

    C++ Type:std::vector<AuxVariableName>

    Controllable:No

    Description:The name of auxiliary variables to save this BC's diagonal jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)

  • displacementsThe displacements

    C++ Type:std::vector<VariableName>

    Controllable:No

    Description:The displacements

  • presetTrueWhether or not to preset the BC (apply the value before the solve begins).

    Default:True

    C++ Type:bool

    Controllable:No

    Description:Whether or not to preset the BC (apply the value before the solve begins).

  • save_inThe name of auxiliary variables to save this BC's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)

    C++ Type:std::vector<AuxVariableName>

    Controllable:No

    Description:The name of auxiliary variables to save this BC's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)

Optional Parameters

  • absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution

    C++ Type:std::vector<TagName>

    Controllable:No

    Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution

  • extra_matrix_tagsThe extra tags for the matrices this Kernel should fill

    C++ Type:std::vector<TagName>

    Controllable:No

    Description:The extra tags for the matrices this Kernel should fill

  • extra_vector_tagsThe extra tags for the vectors this Kernel should fill

    C++ Type:std::vector<TagName>

    Controllable:No

    Description:The extra tags for the vectors this Kernel should fill

  • matrix_tagssystem timeThe tag for the matrices this Kernel should fill

    Default:system time

    C++ Type:MultiMooseEnum

    Options:nontime, system, time

    Controllable:No

    Description:The tag for the matrices this Kernel should fill

  • vector_tagsresidualThe tag for the vectors this Kernel should fill

    Default:residual

    C++ Type:MultiMooseEnum

    Options:nontime, time, residual

    Controllable:No

    Description:The tag for the vectors this Kernel should fill

Tagging Parameters

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • implicitTrueDetermines whether this object is calculated using an implicit or explicit form

    Default:True

    C++ Type:bool

    Controllable:No

    Description:Determines whether this object is calculated using an implicit or explicit form

  • seed0The seed for the master random number generator

    Default:0

    C++ Type:unsigned int

    Controllable:No

    Description:The seed for the master random number generator

  • use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

Advanced Parameters