- cracking_stressThe stress threshold beyond which cracking occurs. Negative values prevent cracking.
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:The stress threshold beyond which cracking occurs. Negative values prevent cracking.
- inelastic_modelsThe material objects to use to calculate stress and inelastic strains. Note: specify creep models first and plasticity models second.
C++ Type:std::vector<MaterialName>
Unit:(no unit assumed)
Controllable:No
Description:The material objects to use to calculate stress and inelastic strains. Note: specify creep models first and plasticity models second.
- softening_modelsThe material objects used to compute softening behavior for loading a crack.Either 1 or 3 models must be specified. If a single model is specified, it isused for all directions. If 3 models are specified, they will be used for the3 crack directions in sequence
C++ Type:std::vector<MaterialName>
Unit:(no unit assumed)
Controllable:No
Description:The material objects used to compute softening behavior for loading a crack.Either 1 or 3 models must be specified. If a single model is specified, it isused for all directions. If 3 models are specified, they will be used for the3 crack directions in sequence
AD Compute Smeared Cracking Stress
Compute stress using a fixed smeared cracking model. Uses automatic differentiation
Description Similar to the ComputeSmearedCrackingStress
object except that the Jacobian of the internal forces is computed via automatic differentiation.
Example Input File Syntax
[./elastic_stress]
type = ADComputeSmearedCrackingStress
cracking_stress = 1.68e6
softening_models = abrupt_softening
[../]
(moose/modules/solid_mechanics/test/tests/ad_smeared_cracking/cracking.i)Input Parameters
- absolute_tolerance1e-05Absolute convergence tolerance for the stress update iterations over the stress change after all update materials are called
Default:1e-05
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Absolute convergence tolerance for the stress update iterations over the stress change after all update materials are called
- base_nameOptional parameter that allows the user to define multiple mechanics material systems on the same block, i.e. for multiple phases
C++ Type:std::string
Unit:(no unit assumed)
Controllable:No
Description:Optional parameter that allows the user to define multiple mechanics material systems on the same block, i.e. for multiple phases
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Unit:(no unit assumed)
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- boundaryThe list of boundaries (ids or names) from the mesh where this object applies
C++ Type:std::vector<BoundaryName>
Unit:(no unit assumed)
Controllable:No
Description:The list of boundaries (ids or names) from the mesh where this object applies
- combined_inelastic_strain_weightsThe combined_inelastic_strain Material Property is a weighted sum of the model inelastic strains. This parameter is a vector of weights, of the same length as inelastic_models. Default = '1 1 ... 1'. This parameter is set to 1 if the number of models = 1
C++ Type:std::vector<double>
Unit:(no unit assumed)
Controllable:No
Description:The combined_inelastic_strain Material Property is a weighted sum of the model inelastic strains. This parameter is a vector of weights, of the same length as inelastic_models. Default = '1 1 ... 1'. This parameter is set to 1 if the number of models = 1
- computeTrueWhen false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:When false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.
- constant_onNONEWhen ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
Default:NONE
C++ Type:MooseEnum
Unit:(no unit assumed)
Controllable:No
Description:When ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
- cracked_elasticity_typeDIAGONALMethod to modify the local elasticity tensor to account for cracking
Default:DIAGONAL
C++ Type:MooseEnum
Unit:(no unit assumed)
Controllable:No
Description:Method to modify the local elasticity tensor to account for cracking
- cracking_neg_fraction0The fraction of the cracking strain at which a transition begins during decreasing strain to the original stiffness.
Default:0
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The fraction of the cracking strain at which a transition begins during decreasing strain to the original stiffness.
- cycle_modelsFalseAt time step N use only inelastic model N % num_models.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:At time step N use only inelastic model N % num_models.
- damage_modelName of the damage model
C++ Type:MaterialName
Unit:(no unit assumed)
Controllable:No
Description:Name of the damage model
- declare_suffixAn optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.
- extra_stress_namesMaterial property names of rank two tensors to be added to the stress.
C++ Type:std::vector<MaterialPropertyName>
Unit:(no unit assumed)
Controllable:No
Description:Material property names of rank two tensors to be added to the stress.
- internal_solve_full_iteration_historyFalseSet to true to output stress update iteration information over the stress change
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Set to true to output stress update iteration information over the stress change
- max_cracks3The maximum number of cracks allowed at a material point.
Default:3
C++ Type:unsigned int
Unit:(no unit assumed)
Controllable:No
Description:The maximum number of cracks allowed at a material point.
- max_iterations30Maximum number of the stress update iterations over the stress change after all update materials are called
Default:30
C++ Type:unsigned int
Unit:(no unit assumed)
Controllable:No
Description:Maximum number of the stress update iterations over the stress change after all update materials are called
- max_stress_correction1Maximum permitted correction to the predicted stress as a ratio of the stress change to the predicted stress from the previous step's damage level. Values less than 1 will improve robustness, but not be as accurate.
Default:1
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Maximum permitted correction to the predicted stress as a ratio of the stress change to the predicted stress from the previous step's damage level. Values less than 1 will improve robustness, but not be as accurate.
- perform_finite_strain_rotationsTrueTensors are correctly rotated in finite-strain simulations. For optimal performance you can set this to 'false' if you are only ever using small strains
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Tensors are correctly rotated in finite-strain simulations. For optimal performance you can set this to 'false' if you are only ever using small strains
- prescribed_crack_directionsPrescribed directions of first cracks
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Controllable:No
Description:Prescribed directions of first cracks
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- relative_tolerance1e-05Relative convergence tolerance for the stress update iterations over the stress change after all update materials are called
Default:1e-05
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Relative convergence tolerance for the stress update iterations over the stress change after all update materials are called
- shear_retention_factor0Fraction of original shear stiffness to be retained after cracking
Default:0
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Fraction of original shear stiffness to be retained after cracking
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Unit:(no unit assumed)
Controllable:No
Description:The seed for the master random number generator
Advanced Parameters
- output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:List of material properties, from this material, to output (outputs must also be defined to an output type)
- outputsnone Vector of output names where you would like to restrict the output of variables(s) associated with this object
Default:none
C++ Type:std::vector<OutputName>
Unit:(no unit assumed)
Controllable:No
Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object