GBEvolution

Computes necessary material properties for the isotropic grain growth model

Overview

This material calculates the order parameter mobility , the free energy prefactor , and the gradient multiplier for the grain growth model from Moelans et al. (2008), assuming isotropic grain boundary (GB) properties and a symmetric interfacial profile (). The parameters are calculated based on the GB energy , the GB mobility , and the phase field interfacial width according to

The GB mobility can be defined in terms of the temperature using an Arrhenius expression

where is the mobility prefactor, is the activation energy, and is the Boltzmann constant.

Example Input File Syntax

[./Moly_GB]
  type = GBEvolution
  time_scale = 1.0
  GBmob0 = 3.986e-6
  T = 500 # K
  wGB = 60 # nm
  Q = 1.0307
  GBenergy = 2.4
[../]
(moose/modules/phase_field/test/tests/grain_growth/evolution.i)

Input Parameters

  • GBenergyGrain boundary energy in J/m^2

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Grain boundary energy in J/m^2

  • TTemperature in Kelvin

    C++ Type:std::vector<VariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:Temperature in Kelvin

  • wGBDiffuse GB width in the length scale of the model

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Diffuse GB width in the length scale of the model

Required Parameters

  • GBMobility-1GB mobility input in m^4/(J*s), that overrides the temperature dependent calculation

    Default:-1

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:GB mobility input in m^4/(J*s), that overrides the temperature dependent calculation

  • GBmob00Grain boundary mobility prefactor in m^4/(J*s)

    Default:0

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Grain boundary mobility prefactor in m^4/(J*s)

  • Q0Grain boundary migration activation energy in eV

    Default:0

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Grain boundary migration activation energy in eV

  • blockThe list of blocks (ids or names) that this object will be applied

    C++ Type:std::vector<SubdomainName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The list of blocks (ids or names) that this object will be applied

  • boundaryThe list of boundaries (ids or names) from the mesh where this object applies

    C++ Type:std::vector<BoundaryName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The list of boundaries (ids or names) from the mesh where this object applies

  • computeTrueWhen false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:When false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.

  • constant_onNONEWhen ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped

    Default:NONE

    C++ Type:MooseEnum

    Unit:(no unit assumed)

    Options:NONE, ELEMENT, SUBDOMAIN

    Controllable:No

    Description:When ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped

  • declare_suffixAn optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Unit:(no unit assumed)

    Controllable:No

    Description:An optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.

  • f0s0.125The GB energy constant

    Default:0.125

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:The GB energy constant

  • length_scale1e-09Length scale in m, where default is nm

    Default:1e-09

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Length scale in m, where default is nm

  • molar_volume2.462e-05Molar volume in m^3/mol, needed for temperature gradient driving force

    Default:2.462e-05

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Molar volume in m^3/mol, needed for temperature gradient driving force

  • prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Unit:(no unit assumed)

    Controllable:No

    Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

  • time_scale1e-09Time scale in s, where default is ns

    Default:1e-09

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Time scale in s, where default is ns

  • use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

Optional Parameters

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Unit:(no unit assumed)

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • implicitTrueDetermines whether this object is calculated using an implicit or explicit form

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Determines whether this object is calculated using an implicit or explicit form

  • seed0The seed for the master random number generator

    Default:0

    C++ Type:unsigned int

    Unit:(no unit assumed)

    Controllable:No

    Description:The seed for the master random number generator

  • use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

Advanced Parameters

  • output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)

    C++ Type:std::vector<std::string>

    Unit:(no unit assumed)

    Controllable:No

    Description:List of material properties, from this material, to output (outputs must also be defined to an output type)

  • outputsnone Vector of output names where you would like to restrict the output of variables(s) associated with this object

    Default:none

    C++ Type:std::vector<OutputName>

    Unit:(no unit assumed)

    Controllable:No

    Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object

Outputs Parameters

References

  1. N. Moelans, B. Blanpain, and P. Wollants. Quantitative analysis of grain boundary properties in a generalized phase field model for grain growth in anisotropic systems. Physical Review B, 78(2):024113, Jul 2008. URL: http://link.aps.org/doi/10.1103/PhysRevB.78.024113 (visited on 2016-06-02), doi:10.1103/PhysRevB.78.024113.[BibTeX]