GrandPotentialSinteringMaterial

Defines switching functions and thermodynamic parameters for the grand potential sintering model. The GrandPotentialSinteringMaterial defines switching functions for void and solid phases as well as switching functions for solid and grain boundary regions. It also defines the susceptibility, vacancy densities and concentrations, potential densities, and the phase field free energy terms , , and .

There are three energy models that can be used for the solid-phase: parabolic (), dilute (), and ideal ().

The equilibrium solid-phase vacancy concentration is determined in a separate material and referenced by this one. This is done to maximize the flexibility of the sintering model to include effects such as GB vacancy segregation and stoichiometry effects.

Additional option for strict mass conservation formulation can be defined using 'mass_conservation' flag set to "true", which generates the coefficients for void and solid phases.

Input Parameters

  • TemperatureName of the temperature variable with units of K

    C++ Type:std::vector<VariableName>

    Controllable:No

    Description:Name of the temperature variable with units of K

  • chemical_potentialThe name of the chemical potential variable

    C++ Type:std::vector<VariableName>

    Controllable:No

    Description:The name of the chemical potential variable

  • equilibrium_vacancy_concentrationName of material that determines the equilibrium vacancy concentration in the solid phase

    C++ Type:MaterialPropertyName

    Controllable:No

    Description:Name of material that determines the equilibrium vacancy concentration in the solid phase

  • etasArray of order parameters that describe solid phase

    C++ Type:std::vector<VariableName>

    Controllable:No

    Description:Array of order parameters that describe solid phase

  • void_energy_coefficientParabolic void energy coefficient (energy/volume)

    C++ Type:MaterialPropertyName

    Controllable:No

    Description:Parabolic void energy coefficient (energy/volume)

  • void_opThe name of the void phase order parameter

    C++ Type:std::vector<VariableName>

    Controllable:No

    Description:The name of the void phase order parameter

Required Parameters

  • atomic_volume0.04092Atomic volume of material

    Default:0.04092

    C++ Type:double

    Controllable:No

    Description:Atomic volume of material

  • blockThe list of blocks (ids or names) that this object will be applied

    C++ Type:std::vector<SubdomainName>

    Controllable:No

    Description:The list of blocks (ids or names) that this object will be applied

  • boundaryThe list of boundaries (ids or names) from the mesh where this object applies

    C++ Type:std::vector<BoundaryName>

    Controllable:No

    Description:The list of boundaries (ids or names) from the mesh where this object applies

  • computeTrueWhen false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.

    Default:True

    C++ Type:bool

    Controllable:No

    Description:When false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.

  • constant_onNONEWhen ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped

    Default:NONE

    C++ Type:MooseEnum

    Options:NONE, ELEMENT, SUBDOMAIN

    Controllable:No

    Description:When ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped

  • declare_suffixAn optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Controllable:No

    Description:An optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.

  • grainboundary_energy9.86Grain boundary energy in units of problem (energy/area)

    Default:9.86

    C++ Type:double

    Controllable:No

    Description:Grain boundary energy in units of problem (energy/area)

  • int_width1Interface width in units of problem (length)

    Default:1

    C++ Type:double

    Controllable:No

    Description:Interface width in units of problem (length)

  • mass_conservationFalseimposing strict mass conservation formulation

    Default:False

    C++ Type:bool

    Controllable:No

    Description:imposing strict mass conservation formulation

  • op_numArray of order parameters that describe solid phase (num_name)

    C++ Type:unsigned int

    Controllable:No

    Description:Array of order parameters that describe solid phase (num_name)

  • prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Controllable:No

    Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

  • solid_energy_coefficient1Parabolic solid energy coefficient (energy/volume). Only used for parabolic energy.

    Default:1

    C++ Type:MaterialPropertyName

    Controllable:No

    Description:Parabolic solid energy coefficient (energy/volume). Only used for parabolic energy.

  • solid_energy_modelPARABOLICType of energy function to use for the solid phase.

    Default:PARABOLIC

    C++ Type:MooseEnum

    Options:PARABOLIC, DILUTE, IDEAL

    Controllable:No

    Description:Type of energy function to use for the solid phase.

  • surface_energy19.7Surface energy in units of problem (energy/area)

    Default:19.7

    C++ Type:double

    Controllable:No

    Description:Surface energy in units of problem (energy/area)

  • surface_switch_value0.3Value between 0 and 1 that determines when the interface begins to switch from surface to GB. Small values give less error while large values converge better.

    Default:0.3

    C++ Type:double

    Controllable:No

    Description:Value between 0 and 1 that determines when the interface begins to switch from surface to GB. Small values give less error while large values converge better.

  • use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

  • var_name_baseArray of order parameters that describe solid phase (base_name)

    C++ Type:std::string

    Controllable:No

    Description:Array of order parameters that describe solid phase (base_name)

Optional Parameters

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • implicitTrueDetermines whether this object is calculated using an implicit or explicit form

    Default:True

    C++ Type:bool

    Controllable:No

    Description:Determines whether this object is calculated using an implicit or explicit form

  • seed0The seed for the master random number generator

    Default:0

    C++ Type:unsigned int

    Controllable:No

    Description:The seed for the master random number generator

  • use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

Advanced Parameters

  • output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:List of material properties, from this material, to output (outputs must also be defined to an output type)

  • outputsnone Vector of output names where you would like to restrict the output of variables(s) associated with this object

    Default:none

    C++ Type:std::vector<OutputName>

    Controllable:No

    Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object

Outputs Parameters

References

No citations exist within this document.