KKSPhaseConcentrationMultiPhaseDerivatives

Kim-Kim-Suzuki (KKS) nested solve material for multiphase models (part 2 of 2). KKSPhaseConcentrationMultiPhaseDerivatives computes the partial derivatives of phase concentrations w.r.t global concentrations and phase parameters, for example, , where is the global concentration and is the phase concentration of species in phase . Another example is where is a phase parameter in the model. These partial derivatives are used in KKS kernels as chain rule terms in the residual and Jacobian. The expressions for the derivatives were presented in Kim et al. (1999).

Example input:

[Materials<<<{"href": "../../syntax/Materials/index.html"}>>>]
  # simple toy free energies
  [F1]
    type = DerivativeParsedMaterial<<<{"description": "Parsed Function Material with automatic derivatives.", "href": "DerivativeParsedMaterial.html"}>>>
    property_name<<<{"description": "Name of the parsed material property"}>>> = F1
    expression<<<{"description": "Parsed function (see FParser) expression for the parsed material"}>>> = '20*(c1-0.2)^2'
    material_property_names<<<{"description": "Vector of material properties used in the parsed function"}>>> = 'c1'
    additional_derivative_symbols<<<{"description": "A list of additional (non-variable) symbols (such as material property or postprocessor names) to take derivatives w.r.t."}>>> = 'c1'
    compute<<<{"description": "When false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies."}>>> = false
  []
  [F2]
    type = DerivativeParsedMaterial<<<{"description": "Parsed Function Material with automatic derivatives.", "href": "DerivativeParsedMaterial.html"}>>>
    property_name<<<{"description": "Name of the parsed material property"}>>> = F2
    expression<<<{"description": "Parsed function (see FParser) expression for the parsed material"}>>> = '20*(c2-0.5)^2'
    material_property_names<<<{"description": "Vector of material properties used in the parsed function"}>>> = 'c2'
    additional_derivative_symbols<<<{"description": "A list of additional (non-variable) symbols (such as material property or postprocessor names) to take derivatives w.r.t."}>>> = 'c2'
    compute<<<{"description": "When false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies."}>>> = false
  []
  [F3]
    type = DerivativeParsedMaterial<<<{"description": "Parsed Function Material with automatic derivatives.", "href": "DerivativeParsedMaterial.html"}>>>
    property_name<<<{"description": "Name of the parsed material property"}>>> = F3
    expression<<<{"description": "Parsed function (see FParser) expression for the parsed material"}>>> = '20*(c3-0.8)^2'
    material_property_names<<<{"description": "Vector of material properties used in the parsed function"}>>> = 'c3'
    additional_derivative_symbols<<<{"description": "A list of additional (non-variable) symbols (such as material property or postprocessor names) to take derivatives w.r.t."}>>> = 'c3'
    compute<<<{"description": "When false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies."}>>> = false
  []
  [KKSPhaseConcentrationMultiPhaseMaterial]
    type = KKSPhaseConcentrationMultiPhaseMaterial<<<{"description": "Computes the KKS phase concentrations by using a nested Newton iteration to solve the equal chemical potential and concentration conservation equations for multiphase systems. This class is intented to be used with KKSPhaseConcentrationMultiPhaseDerivatives.", "href": "KKSPhaseConcentrationMultiPhaseMaterial.html"}>>>
    global_cs<<<{"description": "The interpolated concentrations c, b, etc."}>>> = 'c'
    all_etas<<<{"description": "Order parameters."}>>> = 'eta1 eta2 eta3'
    hj_names<<<{"description": "Switching functions in the same order as all_etas."}>>> = 'h1 h2 h3'
    ci_names<<<{"description": "Phase concentrations. They must have the same order as Fj_names and global_cs, for example, c1, c2, b1, b2."}>>> = 'c1 c2 c3'
    ci_IC<<<{"description": "Initial values of ci in the same order of ci_names"}>>> = '0.2 0.5 0.8'
    Fj_names<<<{"description": "Free energy material objects in the same order as all_etas."}>>> = 'F1 F2 F3'
    min_iterations<<<{"description": "Minimum number of nonlinear iterations to execute before accepting convergence"}>>> = 1
    max_iterations<<<{"description": "Maximum number of nonlinear iterations"}>>> = 1000
    absolute_tolerance<<<{"description": "Absolute convergence tolerance for Newton iteration"}>>> = 1e-11
    relative_tolerance<<<{"description": "Relative convergence tolerance for Newton iteration"}>>> = 1e-10
  []
  [KKSPhaseConcentrationMultiPhaseDerivatives]
    type = KKSPhaseConcentrationMultiPhaseDerivatives<<<{"description": "Computes the KKS phase concentration derivatives wrt global concentrations and order parameters, which are used for the chain rule in the KKS kernels. This class is intended to be used with KKSPhaseConcentrationMultiPhaseMaterial.", "href": "KKSPhaseConcentrationMultiPhaseDerivatives.html"}>>>
    global_cs<<<{"description": "The interpolated concentrations c, b, etc"}>>> = 'c'
    all_etas<<<{"description": "Order parameters."}>>> = 'eta1 eta2 eta3'
    Fj_names<<<{"description": "Free energy material objects in the same order as all_etas."}>>> = 'F1 F2 F3'
    hj_names<<<{"description": "witching functions in the same order as all_etas."}>>> = 'h1 h2 h3'
    ci_names<<<{"description": "Phase concentrations. They must have the same order as Fj_names and global_cs, for example, c1, c2, b1, b2."}>>> = 'c1 c2 c3'
  []

  # Switching functions for each phase
  # h1(eta1, eta2, eta3)
  [h1]
    type = SwitchingFunction3PhaseMaterial<<<{"description": "Material for switching function that prevents formation of a third phase at a two-phase interface: $h_i = \\eta_i^2/4 [15 (1-\\eta_i) [1 + \\eta_i - (\\eta_k - \\eta_j)^2] + \\eta_i (9\\eta_i^2 - 5)]$", "href": "SwitchingFunction3PhaseMaterial.html"}>>>
    eta_i<<<{"description": "Order parameter i"}>>> = eta1
    eta_j<<<{"description": "Order parameter j"}>>> = eta2
    eta_k<<<{"description": "Order parameter k"}>>> = eta3
    property_name<<<{"description": "Name of the parsed material property"}>>> = h1
  []
  # h2(eta1, eta2, eta3)
  [h2]
    type = SwitchingFunction3PhaseMaterial<<<{"description": "Material for switching function that prevents formation of a third phase at a two-phase interface: $h_i = \\eta_i^2/4 [15 (1-\\eta_i) [1 + \\eta_i - (\\eta_k - \\eta_j)^2] + \\eta_i (9\\eta_i^2 - 5)]$", "href": "SwitchingFunction3PhaseMaterial.html"}>>>
    eta_i<<<{"description": "Order parameter i"}>>> = eta2
    eta_j<<<{"description": "Order parameter j"}>>> = eta3
    eta_k<<<{"description": "Order parameter k"}>>> = eta1
    property_name<<<{"description": "Name of the parsed material property"}>>> = h2
  []
  # h3(eta1, eta2, eta3)
  [h3]
    type = SwitchingFunction3PhaseMaterial<<<{"description": "Material for switching function that prevents formation of a third phase at a two-phase interface: $h_i = \\eta_i^2/4 [15 (1-\\eta_i) [1 + \\eta_i - (\\eta_k - \\eta_j)^2] + \\eta_i (9\\eta_i^2 - 5)]$", "href": "SwitchingFunction3PhaseMaterial.html"}>>>
    eta_i<<<{"description": "Order parameter i"}>>> = eta3
    eta_j<<<{"description": "Order parameter j"}>>> = eta1
    eta_k<<<{"description": "Order parameter k"}>>> = eta2
    property_name<<<{"description": "Name of the parsed material property"}>>> = h3
  []

  # Barrier functions for each phase
  [g1]
    type = BarrierFunctionMaterial<<<{"description": "Helper material to provide $g(\\eta)$ and its derivative in a polynomial.\nSIMPLE: $\\eta^2(1-\\eta)^2$\nLOW: $\\eta(1-\\eta)$\nHIGH: $\\eta^2(1-\\eta^2)^2$", "href": "BarrierFunctionMaterial.html"}>>>
    g_order<<<{"description": "Polynomial order of the barrier function g(eta)"}>>> = SIMPLE
    eta<<<{"description": "Order parameter variable"}>>> = eta1
    function_name<<<{"description": "actual name for f(eta), i.e. 'h' or 'g'"}>>> = g1
  []
  [g2]
    type = BarrierFunctionMaterial<<<{"description": "Helper material to provide $g(\\eta)$ and its derivative in a polynomial.\nSIMPLE: $\\eta^2(1-\\eta)^2$\nLOW: $\\eta(1-\\eta)$\nHIGH: $\\eta^2(1-\\eta^2)^2$", "href": "BarrierFunctionMaterial.html"}>>>
    g_order<<<{"description": "Polynomial order of the barrier function g(eta)"}>>> = SIMPLE
    eta<<<{"description": "Order parameter variable"}>>> = eta2
    function_name<<<{"description": "actual name for f(eta), i.e. 'h' or 'g'"}>>> = g2
  []
  [g3]
    type = BarrierFunctionMaterial<<<{"description": "Helper material to provide $g(\\eta)$ and its derivative in a polynomial.\nSIMPLE: $\\eta^2(1-\\eta)^2$\nLOW: $\\eta(1-\\eta)$\nHIGH: $\\eta^2(1-\\eta^2)^2$", "href": "BarrierFunctionMaterial.html"}>>>
    g_order<<<{"description": "Polynomial order of the barrier function g(eta)"}>>> = SIMPLE
    eta<<<{"description": "Order parameter variable"}>>> = eta3
    function_name<<<{"description": "actual name for f(eta), i.e. 'h' or 'g'"}>>> = g3
  []

  # constant properties
  [constants]
    type = GenericConstantMaterial<<<{"description": "Declares material properties based on names and values prescribed by input parameters.", "href": "GenericConstantMaterial.html"}>>>
    prop_names<<<{"description": "The names of the properties this material will have"}>>> = 'L   kappa  M'
    prop_values<<<{"description": "The values associated with the named properties"}>>> = '0.7 1.0    0.025'
  []
[]
(moose/modules/phase_field/test/tests/KKS_system/kks_example_multiphase_nested.i)

Class Description

Computes the KKS phase concentration derivatives wrt global concentrations and order parameters, which are used for the chain rule in the KKS kernels. This class is intended to be used with KKSPhaseConcentrationMultiPhaseMaterial.

Input Parameters

  • Fj_namesFree energy material objects in the same order as all_etas.

    C++ Type:std::vector<MaterialName>

    Controllable:No

    Description:Free energy material objects in the same order as all_etas.

  • all_etasOrder parameters.

    C++ Type:std::vector<VariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:Order parameters.

  • ci_namesPhase concentrations. They must have the same order as Fj_names and global_cs, for example, c1, c2, b1, b2.

    C++ Type:std::vector<MaterialPropertyName>

    Unit:(no unit assumed)

    Controllable:No

    Description:Phase concentrations. They must have the same order as Fj_names and global_cs, for example, c1, c2, b1, b2.

  • global_csThe interpolated concentrations c, b, etc

    C++ Type:std::vector<VariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The interpolated concentrations c, b, etc

  • hj_nameswitching functions in the same order as all_etas.

    C++ Type:std::vector<MaterialPropertyName>

    Unit:(no unit assumed)

    Controllable:No

    Description:witching functions in the same order as all_etas.

Required Parameters

  • blockThe list of blocks (ids or names) that this object will be applied

    C++ Type:std::vector<SubdomainName>

    Controllable:No

    Description:The list of blocks (ids or names) that this object will be applied

  • boundaryThe list of boundaries (ids or names) from the mesh where this object applies

    C++ Type:std::vector<BoundaryName>

    Controllable:No

    Description:The list of boundaries (ids or names) from the mesh where this object applies

  • computeTrueWhen false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.

    Default:True

    C++ Type:bool

    Controllable:No

    Description:When false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.

  • constant_onNONEWhen ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped

    Default:NONE

    C++ Type:MooseEnum

    Options:NONE, ELEMENT, SUBDOMAIN

    Controllable:No

    Description:When ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped

  • declare_suffixAn optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Unit:(no unit assumed)

    Controllable:No

    Description:An optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.

Optional Parameters

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • implicitTrueDetermines whether this object is calculated using an implicit or explicit form

    Default:True

    C++ Type:bool

    Controllable:No

    Description:Determines whether this object is calculated using an implicit or explicit form

  • seed0The seed for the master random number generator

    Default:0

    C++ Type:unsigned int

    Controllable:No

    Description:The seed for the master random number generator

  • use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

Advanced Parameters

  • output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:List of material properties, from this material, to output (outputs must also be defined to an output type)

  • outputsnone Vector of output names where you would like to restrict the output of variables(s) associated with this object

    Default:none

    C++ Type:std::vector<OutputName>

    Controllable:No

    Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object

Outputs Parameters

  • prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Unit:(no unit assumed)

    Controllable:No

    Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

  • use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

Material Property Retrieval Parameters

References

  1. Seong Gyoon Kim, Won Tae Kim, and Toshio Suzuki. Phase-field model for binary alloys. Physical Review E, 60(6):7186–7197, December 1999. URL: http://link.aps.org/doi/10.1103/PhysRevE.60.7186 (visited on 2014-03-31), doi:10.1103/PhysRevE.60.7186.[BibTeX]