LinearizedInterfaceFunction

Defines the order parameter substitution for linearized interface phase field models

Overview

Figure 1: Example of order parameter values (, ) and the linear preconditioning transformed variables (, ),

This material defines the linearized interface substitution defined in Glasner (2001). This substitution converts the profile from a nonlinear shape to a linear shape, as shown in Fig. 1, requiring fewer elements across the interface to accurately resolve.

The transformation implemented in this material is defined as

where is the order parameter and is the transformed variable. The function is implemented using the ExpressionBuilder capability in MOOSE, such that all the derivatives of the function are calculated analytically.

Example Input File Syntax

The material is used via the syntax shown below:

[Materials]
  [gr0]
    type = LinearizedInterfaceFunction
    f_name = gr0
    phi = phi0
  []
[]
(moose/modules/phase_field/test/tests/grain_growth_w_linearized_interface/grain_growth_linearized_interface.i)

This material is also generated as part of the automated syntax implemented in GrainGrowthLinearizedInterfaceAction.

Input Parameters

  • phiConcentration variable

    C++ Type:std::vector<VariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:Concentration variable

Required Parameters

  • additional_derivative_symbolsA list of additional (non-variable) symbols (such as material property or postprocessor names) to take derivatives w.r.t.

    C++ Type:std::vector<std::string>

    Unit:(no unit assumed)

    Controllable:No

    Description:A list of additional (non-variable) symbols (such as material property or postprocessor names) to take derivatives w.r.t.

  • blockThe list of blocks (ids or names) that this object will be applied

    C++ Type:std::vector<SubdomainName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The list of blocks (ids or names) that this object will be applied

  • boundaryThe list of boundaries (ids or names) from the mesh where this object applies

    C++ Type:std::vector<BoundaryName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The list of boundaries (ids or names) from the mesh where this object applies

  • computeTrueWhen false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:When false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.

  • constant_onNONEWhen ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped

    Default:NONE

    C++ Type:MooseEnum

    Unit:(no unit assumed)

    Options:NONE, ELEMENT, SUBDOMAIN

    Controllable:No

    Description:When ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped

  • declare_suffixAn optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Unit:(no unit assumed)

    Controllable:No

    Description:An optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.

  • derivative_order3Maximum order of derivatives taken

    Default:3

    C++ Type:unsigned int

    Unit:(no unit assumed)

    Controllable:No

    Description:Maximum order of derivatives taken

  • epsilon1e-12Fuzzy comparison tolerance

    Default:1e-12

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Fuzzy comparison tolerance

  • error_on_missing_material_propertiesTrueThrow an error if any explicitly requested material property does not exist. Otherwise assume it to be zero.

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Throw an error if any explicitly requested material property does not exist. Otherwise assume it to be zero.

  • extra_symbolsSpecial symbols, like point coordinates, time, and timestep size.

    C++ Type:MultiMooseEnum

    Unit:(no unit assumed)

    Options:x, y, z, t, dt

    Controllable:No

    Description:Special symbols, like point coordinates, time, and timestep size.

  • prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Unit:(no unit assumed)

    Controllable:No

    Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

  • property_nameFName of the parsed material property

    Default:F

    C++ Type:std::string

    Unit:(no unit assumed)

    Controllable:No

    Description:Name of the parsed material property

  • upstream_materialsList of upstream material properties that must be evaluated when compute=false

    C++ Type:std::vector<MaterialName>

    Unit:(no unit assumed)

    Controllable:No

    Description:List of upstream material properties that must be evaluated when compute=false

  • use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

Optional Parameters

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Unit:(no unit assumed)

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • implicitTrueDetermines whether this object is calculated using an implicit or explicit form

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Determines whether this object is calculated using an implicit or explicit form

  • seed0The seed for the master random number generator

    Default:0

    C++ Type:unsigned int

    Unit:(no unit assumed)

    Controllable:No

    Description:The seed for the master random number generator

  • use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

Advanced Parameters

  • disable_fpoptimizerFalseDisable the function parser algebraic optimizer

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Disable the function parser algebraic optimizer

  • enable_ad_cacheTrueEnable caching of function derivatives for faster startup time

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Enable caching of function derivatives for faster startup time

  • enable_auto_optimizeTrueEnable automatic immediate optimization of derivatives

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Enable automatic immediate optimization of derivatives

  • enable_jitTrueEnable just-in-time compilation of function expressions for faster evaluation

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Enable just-in-time compilation of function expressions for faster evaluation

  • evalerror_behaviornanWhat to do if evaluation error occurs. Options are to pass a nan, pass a nan with a warning, throw a error, or throw an exception

    Default:nan

    C++ Type:MooseEnum

    Unit:(no unit assumed)

    Options:nan, nan_warning, error, exception

    Controllable:No

    Description:What to do if evaluation error occurs. Options are to pass a nan, pass a nan with a warning, throw a error, or throw an exception

Parsed Expression Advanced Parameters

  • output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)

    C++ Type:std::vector<std::string>

    Unit:(no unit assumed)

    Controllable:No

    Description:List of material properties, from this material, to output (outputs must also be defined to an output type)

  • outputsnone Vector of output names where you would like to restrict the output of variables(s) associated with this object

    Default:none

    C++ Type:std::vector<OutputName>

    Unit:(no unit assumed)

    Controllable:No

    Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object

Outputs Parameters

References

  1. Karl Glasner. Nonlinear preconditioning for diffuse interfaces. Journal of Computational Physics, 174(2):695–711, 2001.[BibTeX]