- T_solidThe solid temperature.
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:The solid temperature.
- boundaryThe list of boundary IDs from the mesh where this object applies
C++ Type:std::vector<BoundaryName>
Unit:(no unit assumed)
Controllable:No
Description:The list of boundary IDs from the mesh where this object applies
ConvectiveHeatTransferSideIntegral
Computes the total convective heat transfer across a boundary.
Description
This postprocessor computes the total heat flux by integrating the product of the temperature difference and the heat transfer coefficient over a set of boundaries.
where is the set of boundaries, is the solid temperature, is the fluid temperature, and is the heat transfer coefficient.
This postprocessor is useful for ensuring conservative transfers when Robin boundary conditions are used.
Example Input File Syntax
[Mesh]
type = MeshGeneratorMesh
[./cartesian]
type = CartesianMeshGenerator
dim = 2
dx = '0.45 0.1 0.45'
ix = '5 1 5'
dy = '0.45 0.1 0.45'
iy = '5 1 5'
subdomain_id = '1 1 1
1 2 1
1 1 1'
[../]
[./add_iss_1]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 1
paired_block = 2
new_boundary = 'interface'
input = cartesian
[../]
[./block_deleter]
type = BlockDeletionGenerator
block = 2
input = add_iss_1
[../]
[]
[Variables]
[./temperature]
initial_condition = 300
[../]
[]
[AuxVariables]
[./channel_T]
family = MONOMIAL
order = CONSTANT
initial_condition = 400
[../]
[./channel_Hw]
family = MONOMIAL
order = CONSTANT
initial_condition = 1000
[../]
[]
[Kernels]
[./graphite_diffusion]
type = HeatConduction
variable = temperature
diffusion_coefficient = 'k_s'
[../]
[]
[BCs]
## boundary conditions for the thm channels in the reflector
[./channel_heat_transfer]
type = CoupledConvectiveHeatFluxBC
variable = temperature
htc = channel_Hw
T_infinity = channel_T
boundary = 'interface'
[../]
# hot boundary on the left
[./left]
type = DirichletBC
variable = temperature
value = 1000
boundary = 'left'
[../]
# cool boundary on the right
[./right]
type = DirichletBC
variable = temperature
value = 300
boundary = 'right'
[../]
[]
[Materials]
[./thermal]
type = GenericConstantMaterial
prop_names = 'k_s'
prop_values = '12'
[../]
[./htc_material]
type = GenericConstantMaterial
prop_names = 'alpha_wall'
prop_values = '1000'
[../]
[./tfluid_mat]
type = PiecewiseLinearInterpolationMaterial
property = tfluid_mat
variable = channel_T
x = '400 500'
y = '400 500'
[../]
[]
[Postprocessors]
[./Qw1]
type = ConvectiveHeatTransferSideIntegral
T_fluid_var = channel_T
htc_var = channel_Hw
T_solid = temperature
boundary = interface
[../]
[./Qw2]
type = ConvectiveHeatTransferSideIntegral
T_fluid_var = channel_T
htc = alpha_wall
T_solid = temperature
boundary = interface
[../]
[./Qw3]
type = ConvectiveHeatTransferSideIntegral
T_fluid = tfluid_mat
htc = alpha_wall
T_solid = temperature
boundary = interface
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
csv = true
[]
(moose/modules/heat_transfer/test/tests/postprocessors/convective_ht_side_integral.i)Input Parameters
- T_fluidName of the fluid temperature material property
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:Name of the fluid temperature material property
- T_fluid_varThe fluid temperature.
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:The fluid temperature.
- execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
Default:TIMESTEP_END
C++ Type:ExecFlagEnum
Unit:(no unit assumed)
Controllable:No
Description:The list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
- htcName of alpha_wall material property
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:Name of alpha_wall material property
- htc_varHTC variable
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:HTC variable
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Optional Parameters
- allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- execution_order_group0Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
Default:0
C++ Type:int
Unit:(no unit assumed)
Controllable:No
Description:Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
- force_postauxFalseForces the UserObject to be executed in POSTAUX
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in POSTAUX
- force_preauxFalseForces the UserObject to be executed in PREAUX
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in PREAUX
- force_preicFalseForces the UserObject to be executed in PREIC during initial setup
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in PREIC during initial setup
- outputsVector of output names where you would like to restrict the output of variables(s) associated with this object
C++ Type:std::vector<OutputName>
Unit:(no unit assumed)
Controllable:No
Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.