- boundaryThe list of boundary IDs from the mesh where this object applies
C++ Type:std::vector<BoundaryName>
Unit:(no unit assumed)
Controllable:No
Description:The list of boundary IDs from the mesh where this object applies
- temperatureThe name of the temperature variable
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:The name of the temperature variable
GapFluxModelConduction
Gap flux model for varying gap conductance using a coupled variable for temperature
Description
GapFluxModelConduction
computes a conductive heat flux across a gap following the existing implementation of radiation physics. It is used by ModularGapConductanceConstraint.md.
The user is required to select the appropriate gap_geometry_type
parameter (PLATE, CYLINDER, or SPHERE) for the model geometry in ModularGapConductanceConstraint.md. Two-dimensional Cartesian geometries are not restricted to be in or parallel to the X-Y coordinate plane.
Input Parameters
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Optional Parameters
- allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- execution_order_group0Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
Default:0
C++ Type:int
Unit:(no unit assumed)
Controllable:No
Description:Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
- force_postauxFalseForces the UserObject to be executed in POSTAUX
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in POSTAUX
- force_preauxFalseForces the UserObject to be executed in PREAUX
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in PREAUX
- force_preicFalseForces the UserObject to be executed in PREIC during initial setup
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in PREIC during initial setup
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- use_displaced_meshTrueWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- gap_conductivity1Gap conductivity value
Default:1
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Gap conductivity value
- gap_conductivity_functionThermal conductivity of the gap material as a function. Multiplied by gap_conductivity.
C++ Type:FunctionName
Unit:(no unit assumed)
Controllable:No
Description:Thermal conductivity of the gap material as a function. Multiplied by gap_conductivity.
- gap_conductivity_function_variableVariable to be used in the gap_conductivity_function in place of time
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:Variable to be used in the gap_conductivity_function in place of time
- min_gap1e-06A minimum gap (denominator) size
Default:1e-06
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:A minimum gap (denominator) size
- min_gap_order0Order of the Taylor expansion below min_gap for GapFluxModelConductionBase
Default:0
C++ Type:unsigned int
Unit:(no unit assumed)
Controllable:No
Description:Order of the Taylor expansion below min_gap for GapFluxModelConductionBase