Mortar Gap Heat Transfer Action

The mortar gap heat transfer action leverages a modular design to the computation of heat transfer. A mortar constraint enforcing a heat flux adds contributions of well-defined physics components. The modular contributions of phenomena such as conduction and radiation are thus accumulated to compute an overall heat flux field. These contributions reside in user objects such as GapFluxModelConduction and GapFluxModelRadiation, which are timely called from ModularGapConductanceConstraint to build residual vectors and Jacobians.

This action can be used in two separate modes. On the one hand, the user may choose to build the physics-modeling user objects in the input. As such, the user will list the user objects in the user_created_gap_flux_models input parameter. Alternatively, the user may elect to add conduction or radiation (or both contributions simultaneously) physics via the enumeration input parameter gap_flux_options.

The action can be expanded with more accurate or additional physics, which, according to this design pattern, must be implemented in InterfaceUserObjects.

Input Parameters

  • boundaryThe list of boundary IDs from the mesh where this object applies

    C++ Type:std::vector<BoundaryName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The list of boundary IDs from the mesh where this object applies

  • primary_boundaryThe name of the primary boundary sideset.

    C++ Type:BoundaryName

    Unit:(no unit assumed)

    Controllable:No

    Description:The name of the primary boundary sideset.

  • secondary_boundaryThe name of the secondary boundary sideset.

    C++ Type:BoundaryName

    Unit:(no unit assumed)

    Controllable:No

    Description:The name of the secondary boundary sideset.

  • temperatureThe name of the temperature variable

    C++ Type:std::vector<VariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The name of the temperature variable

Required Parameters

  • active__all__ If specified only the blocks named will be visited and made active

    Default:__all__

    C++ Type:std::vector<std::string>

    Unit:(no unit assumed)

    Controllable:No

    Description:If specified only the blocks named will be visited and made active

  • aux_lmAuxiliary Lagrange multiplier variable that is utilized together with the Petrov-Galerkin approach.

    C++ Type:std::vector<VariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:Auxiliary Lagrange multiplier variable that is utilized together with the Petrov-Galerkin approach.

  • compute_lm_residualsTrueWhether to compute Lagrange Multiplier residuals

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Whether to compute Lagrange Multiplier residuals

  • compute_primal_residualsTrueWhether to compute residuals for the primal variable.

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Whether to compute residuals for the primal variable.

  • debug_meshFalseWhether this constraint is going to enable mortar segment mesh debug information. An exodusfile will be generated if the user sets this flag to true

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Whether this constraint is going to enable mortar segment mesh debug information. An exodusfile will be generated if the user sets this flag to true

  • displacementsDisplacement variables

    C++ Type:std::vector<VariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:Displacement variables

  • ghost_higher_d_neighborsFalseWhether we should ghost higher-dimensional neighbors. This is necessary when we are doing second order mortar with finite volume primal variables, because in order for the method to be second order we must use cell gradients, which couples in the neighbor cells.

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Whether we should ghost higher-dimensional neighbors. This is necessary when we are doing second order mortar with finite volume primal variables, because in order for the method to be second order we must use cell gradients, which couples in the neighbor cells.

  • ghost_point_neighborsFalseWhether we should ghost point neighbors of secondary face elements, and consequently also their mortar interface couples.

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Whether we should ghost point neighbors of secondary face elements, and consequently also their mortar interface couples.

  • inactiveIf specified blocks matching these identifiers will be skipped.

    C++ Type:std::vector<std::string>

    Unit:(no unit assumed)

    Controllable:No

    Description:If specified blocks matching these identifiers will be skipped.

  • interpolate_normalsTrueWhether to interpolate the nodal normals (e.g. classic idea of evaluating field at quadrature points). If this is set to false, then non-interpolated nodal normals will be used, and then the _normals member should be indexed with _i instead of _qp

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Whether to interpolate the nodal normals (e.g. classic idea of evaluating field at quadrature points). If this is set to false, then non-interpolated nodal normals will be used, and then the _normals member should be indexed with _i instead of _qp

  • minimum_projection_angle40Parameter to control which angle (in degrees) is admissible for the creation of mortar segments. If set to a value close to zero, very oblique projections are allowed, which can result in mortar segments solving physics not meaningfully, and overprojection of primary nodes onto the mortar segment mesh in extreme cases. This parameter is mostly intended for mortar mesh debugging purposes in two dimensions.

    Default:40

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Parameter to control which angle (in degrees) is admissible for the creation of mortar segments. If set to a value close to zero, very oblique projections are allowed, which can result in mortar segments solving physics not meaningfully, and overprojection of primary nodes onto the mortar segment mesh in extreme cases. This parameter is mostly intended for mortar mesh debugging purposes in two dimensions.

  • periodicFalseWhether this constraint is going to be used to enforce a periodic condition. This has the effect of changing the normals vector for projection from outward to inward facing

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Whether this constraint is going to be used to enforce a periodic condition. This has the effect of changing the normals vector for projection from outward to inward facing

  • primary_variablePrimal variable on primary surface. If this parameter is not provided then the primary variable will be initialized to the secondary variable

    C++ Type:VariableName

    Unit:(no unit assumed)

    Controllable:No

    Description:Primal variable on primary surface. If this parameter is not provided then the primary variable will be initialized to the secondary variable

  • prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Unit:(no unit assumed)

    Controllable:No

    Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

  • quadratureDEFAULTQuadrature rule to use on mortar segments. For 2D mortar DEFAULT is recommended. For 3D mortar, QUAD meshes are integrated using triangle mortar segments. While DEFAULT quadrature order is typically sufficiently accurate, exact integration of QUAD mortar faces requires SECOND order quadrature for FIRST variables and FOURTH order quadrature for SECOND order variables.

    Default:DEFAULT

    C++ Type:MooseEnum

    Unit:(no unit assumed)

    Options:DEFAULT, FIRST, SECOND, THIRD, FOURTH

    Controllable:No

    Description:Quadrature rule to use on mortar segments. For 2D mortar DEFAULT is recommended. For 3D mortar, QUAD meshes are integrated using triangle mortar segments. While DEFAULT quadrature order is typically sufficiently accurate, exact integration of QUAD mortar faces requires SECOND order quadrature for FIRST variables and FOURTH order quadrature for SECOND order variables.

  • secondary_variablePrimal variable on secondary surface.

    C++ Type:VariableName

    Unit:(no unit assumed)

    Controllable:No

    Description:Primal variable on secondary surface.

  • use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

  • use_petrov_galerkinFalseWhether to use the Petrov-Galerkin approach for the mortar-based constraints. If set to true, we use the standard basis as the test function and dual basis as the shape function for the interpolation of the Lagrange multiplier variable.

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Whether to use the Petrov-Galerkin approach for the mortar-based constraints. If set to true, we use the standard basis as the test function and dual basis as the shape function for the interpolation of the Lagrange multiplier variable.

  • variableThe name of the lagrange multiplier variable that this constraint is applied to. This parameter may not be supplied in the case of using penalty methods for example

    C++ Type:NonlinearVariableName

    Unit:(no unit assumed)

    Controllable:No

    Description:The name of the lagrange multiplier variable that this constraint is applied to. This parameter may not be supplied in the case of using penalty methods for example

Optional Parameters

  • absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution

    C++ Type:std::vector<TagName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution

  • extra_matrix_tagsThe extra tags for the matrices this Kernel should fill

    C++ Type:std::vector<TagName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The extra tags for the matrices this Kernel should fill

  • extra_vector_tagsThe extra tags for the vectors this Kernel should fill

    C++ Type:std::vector<TagName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The extra tags for the vectors this Kernel should fill

  • matrix_tagssystemThe tag for the matrices this Kernel should fill

    Default:system

    C++ Type:MultiMooseEnum

    Unit:(no unit assumed)

    Options:nontime, system

    Controllable:No

    Description:The tag for the matrices this Kernel should fill

  • vector_tagsnontimeThe tag for the vectors this Kernel should fill

    Default:nontime

    C++ Type:MultiMooseEnum

    Unit:(no unit assumed)

    Options:nontime, time

    Controllable:No

    Description:The tag for the vectors this Kernel should fill

Tagging Parameters

  • allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Unit:(no unit assumed)

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • execution_order_group0Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.

    Default:0

    C++ Type:int

    Unit:(no unit assumed)

    Controllable:No

    Description:Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.

  • force_postauxFalseForces the UserObject to be executed in POSTAUX

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Forces the UserObject to be executed in POSTAUX

  • force_preauxFalseForces the UserObject to be executed in PREAUX

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Forces the UserObject to be executed in PREAUX

  • force_preicFalseForces the UserObject to be executed in PREIC during initial setup

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Forces the UserObject to be executed in PREIC during initial setup

  • implicitTrueDetermines whether this object is calculated using an implicit or explicit form

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Determines whether this object is calculated using an implicit or explicit form

  • seed0The seed for the master random number generator

    Default:0

    C++ Type:unsigned int

    Unit:(no unit assumed)

    Controllable:No

    Description:The seed for the master random number generator

  • use_displaced_meshTrueWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

Advanced Parameters

  • correct_edge_droppingTrueWhether to enable correct edge dropping treatment for mortar constraints. When disabled any Lagrange Multiplier degree of freedom on a secondary element without full primary contributions will be set (strongly) to 0.

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Whether to enable correct edge dropping treatment for mortar constraints. When disabled any Lagrange Multiplier degree of freedom on a secondary element without full primary contributions will be set (strongly) to 0.

  • thermal_lm_scaling1Scaling factor to apply to the thermal Lagrange multiplier variable

    Default:1

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Scaling factor to apply to the thermal Lagrange multiplier variable

Thermal Lagrange Multiplier Parameters

  • cylinder_axis_point_1Start point for line defining cylindrical axis

    C++ Type:libMesh::VectorValue<double>

    Unit:(no unit assumed)

    Controllable:No

    Description:Start point for line defining cylindrical axis

  • cylinder_axis_point_2End point for line defining cylindrical axis

    C++ Type:libMesh::VectorValue<double>

    Unit:(no unit assumed)

    Controllable:No

    Description:End point for line defining cylindrical axis

  • gap_geometry_typeAUTOGap calculation type. The geometry type is used to compute gap distances and scale fluxes to ensure energy balance. If AUTO is selected, the gap geometry is automatically set via the mesh coordinate system.

    Default:AUTO

    C++ Type:MooseEnum

    Unit:(no unit assumed)

    Options:AUTO, PLATE, CYLINDER, SPHERE

    Controllable:No

    Description:Gap calculation type. The geometry type is used to compute gap distances and scale fluxes to ensure energy balance. If AUTO is selected, the gap geometry is automatically set via the mesh coordinate system.

  • max_gap1e+06A maximum gap size

    Default:1e+06

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:A maximum gap size

  • sphere_originOrigin for sphere geometry

    C++ Type:libMesh::VectorValue<double>

    Unit:(no unit assumed)

    Controllable:No

    Description:Origin for sphere geometry

Gap Geometry Parameters

  • gap_conductivity1Gap conductivity value

    Default:1

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Gap conductivity value

  • gap_conductivity_functionThermal conductivity of the gap material as a function. Multiplied by gap_conductivity.

    C++ Type:FunctionName

    Unit:(no unit assumed)

    Controllable:No

    Description:Thermal conductivity of the gap material as a function. Multiplied by gap_conductivity.

  • gap_conductivity_function_variableVariable to be used in the gap_conductivity_function in place of time

    C++ Type:std::vector<VariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:Variable to be used in the gap_conductivity_function in place of time

  • min_gap1e-06A minimum gap (denominator) size

    Default:1e-06

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:A minimum gap (denominator) size

  • min_gap_order0Order of the Taylor expansion below min_gap for GapFluxModelConductionBase

    Default:0

    C++ Type:unsigned int

    Unit:(no unit assumed)

    Controllable:No

    Description:Order of the Taylor expansion below min_gap for GapFluxModelConductionBase

Gap Conductive Flux Parameters

  • gap_flux_modelsList of GapFluxModel user objects

    C++ Type:std::vector<UserObjectName>

    Unit:(no unit assumed)

    Controllable:No

    Description:List of GapFluxModel user objects

  • gap_flux_optionsThe gap flux models to build

    C++ Type:MultiMooseEnum

    Unit:(no unit assumed)

    Options:conduction, radiation

    Controllable:No

    Description:The gap flux models to build

  • user_created_gap_flux_modelsThe name of the user objects created by the user to represent gap heat transfer physics

    C++ Type:std::vector<UserObjectName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The name of the user objects created by the user to represent gap heat transfer physics

Gap Flux Models Parameters

  • primary_emissivity1The emissivity of the primary surface

    Default:1

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:The emissivity of the primary surface

  • secondary_emissivity1The emissivity of the secondary surface

    Default:1

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:The emissivity of the secondary surface

  • stefan_boltzmann5.67037e-08Stefan-Boltzmann constant

    Default:5.67037e-08

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Stefan-Boltzmann constant

Gap Radiative Flux Parameters

  • primary_subdomainThe name of the primary subdomain.

    C++ Type:SubdomainName

    Unit:(no unit assumed)

    Controllable:No

    Description:The name of the primary subdomain.

  • secondary_subdomainThe name of the secondary subdomain.

    C++ Type:SubdomainName

    Unit:(no unit assumed)

    Controllable:No

    Description:The name of the secondary subdomain.

Gap Surface Definition Parameters

References

No citations exist within this document.