TagMatrixAux

The diagonal value of the matrix (associated with a tag) is retrieved for a given node. And the diagonal value is used as the nodal value for the AuxVariable that will be written out in an exodus file for visualization.

Setting the "scaled" parameter to false makes the kernel return values unaffected by variable scaling and automatic scaling. Note, however, that nodal boundary conditions and strong constraints are setting Jacobian entries independent of scaling and can lead to unexpected unscaled results.

Couple the diagonal of a tag matrix, and return its nodal value

Input Parameters

  • vThe coupled variable whose components are coupled to AuxVariable

    C++ Type:std::vector<VariableName>

    Controllable:No

    Description:The coupled variable whose components are coupled to AuxVariable

  • variableThe name of the variable that this object applies to

    C++ Type:AuxVariableName

    Controllable:No

    Description:The name of the variable that this object applies to

Required Parameters

  • blockThe list of blocks (ids or names) that this object will be applied

    C++ Type:std::vector<SubdomainName>

    Controllable:No

    Description:The list of blocks (ids or names) that this object will be applied

  • boundaryThe list of boundaries (ids or names) from the mesh where this object applies

    C++ Type:std::vector<BoundaryName>

    Controllable:No

    Description:The list of boundaries (ids or names) from the mesh where this object applies

  • check_boundary_restrictedTrueWhether to check for multiple element sides on the boundary in the case of a boundary restricted, element aux variable. Setting this to false will allow contribution to a single element's elemental value(s) from multiple boundary sides on the same element (example: when the restricted boundary exists on two or more sides of an element, such as at a corner of a mesh

    Default:True

    C++ Type:bool

    Controllable:No

    Description:Whether to check for multiple element sides on the boundary in the case of a boundary restricted, element aux variable. Setting this to false will allow contribution to a single element's elemental value(s) from multiple boundary sides on the same element (example: when the restricted boundary exists on two or more sides of an element, such as at a corner of a mesh

  • execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM, PRE_DISPLACE.

    Default:TIMESTEP_END

    C++ Type:ExecFlagEnum

    Options:NONE, INITIAL, LINEAR, NONLINEAR, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM, PRE_DISPLACE

    Controllable:No

    Description:The list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM, PRE_DISPLACE.

  • matrix_tagTagNameTag Name this Aux works on

    Default:TagName

    C++ Type:TagName

    Controllable:No

    Description:Tag Name this Aux works on

  • prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Controllable:No

    Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

  • scaledTrueReturn value depending on the variable scaling/autoscaling. Set this to false to obtain unscaled physical reaction forces.

    Default:True

    C++ Type:bool

    Controllable:No

    Description:Return value depending on the variable scaling/autoscaling. Set this to false to obtain unscaled physical reaction forces.

  • use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

Optional Parameters

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • seed0The seed for the master random number generator

    Default:0

    C++ Type:unsigned int

    Controllable:No

    Description:The seed for the master random number generator

  • use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

Advanced Parameters

References

No citations exist within this document.