Compute Axisymmetric 1D Small Strain

Compute a small strain in an Axisymmetric 1D problem

Description

The material ComputeAxisymmetric1DSmallStrain calculates the small total strain for 1D Axisymmetric systems and is intended for use with Generalized Plane Strain simulations. This material assumes symmetry about the -axis. This 'strain calculator' material computes the strain within the cylindrical coordinate system and relies on the specialized Axisymmetric RZ kernel to handle the stress divergence calculation.

warningwarning:Symmetry Assumed About the -axis

The axis of symmetry must lie along the -axis in a cylindrical coordinate system. This symmetry orientation is required for the calculation of the residual and of the jacobian. See StressDivergenceRZTensors for the residual equation and the germane discussion.

1D Axisymmetric Strain Formulation

The axisymmetric model uses the cylindrical coordinates, , , and , where the linear section formed by the axis is rotated about the axis in the direction.

The definition of a small total linearized strain is (1) In this axisymmetric 1D formulation, the strain tensor is diagonal. Eq. (1) is therefore implemented in a straight-forward manner as (2) where the components of the strain tensor in Eq. (2) are given as (3) where is a prescribed out-of-plane strain value: this strain value can be given either as a scalar variable or a nonlinear variable. The Generalized Plane Strain problems use scalar variables. The value of the strain depends on the displacement and position in the radial direction.

commentnote:Notation Order Change

The axisymmetric system changes the order of the displacement vector from , usually seen in textbooks, to . Take care to follow this convention in your input files and when adding eigenstrains or extra stresses.

Example Input File

commentnote:Use RZ Coordinate Type

The coordinate type in the Problem block of the input file must be set to COORD_TYPE = RZ.

The common use of the ComputeAxisymmetric1DSmallStrain class is with the Generalized Plane Strain system; this type of simulation uses the scalar strain variables

[./strain]
  type = ComputeAxisymmetric1DSmallStrain
  eigenstrain_names = eigenstrain
  scalar_out_of_plane_strain = scalar_strain_yy
[../]
(moose/modules/solid_mechanics/test/tests/1D_axisymmetric/axisymm_gps_small.i)

which uses a scalar variable for the coupled out-of-plane strain; the argument for the scalar_out_of_plane_strain parameter is the name of the scalar strain variable:

[./scalar_strain_yy]
  order = FIRST
  family = SCALAR
[../]
(moose/modules/solid_mechanics/test/tests/1D_axisymmetric/axisymm_gps_small.i)

Input Parameters

  • displacementsThe displacements appropriate for the simulation geometry and coordinate system

    C++ Type:std::vector<VariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The displacements appropriate for the simulation geometry and coordinate system

Required Parameters

  • base_nameOptional parameter that allows the user to define multiple mechanics material systems on the same block, i.e. for multiple phases

    C++ Type:std::string

    Unit:(no unit assumed)

    Controllable:No

    Description:Optional parameter that allows the user to define multiple mechanics material systems on the same block, i.e. for multiple phases

  • blockThe list of blocks (ids or names) that this object will be applied

    C++ Type:std::vector<SubdomainName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The list of blocks (ids or names) that this object will be applied

  • boundaryThe list of boundaries (ids or names) from the mesh where this object applies

    C++ Type:std::vector<BoundaryName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The list of boundaries (ids or names) from the mesh where this object applies

  • computeTrueWhen false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:When false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.

  • constant_onNONEWhen ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped

    Default:NONE

    C++ Type:MooseEnum

    Unit:(no unit assumed)

    Options:NONE, ELEMENT, SUBDOMAIN

    Controllable:No

    Description:When ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped

  • declare_suffixAn optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Unit:(no unit assumed)

    Controllable:No

    Description:An optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.

  • eigenstrain_namesList of eigenstrains to be applied in this strain calculation

    C++ Type:std::vector<MaterialPropertyName>

    Unit:(no unit assumed)

    Controllable:No

    Description:List of eigenstrains to be applied in this strain calculation

  • global_strainOptional material property holding a global strain tensor applied to the mesh as a whole

    C++ Type:MaterialPropertyName

    Unit:(no unit assumed)

    Controllable:No

    Description:Optional material property holding a global strain tensor applied to the mesh as a whole

  • out_of_plane_strainNonlinear variable for axisymmetric 1D problem

    C++ Type:std::vector<VariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:Nonlinear variable for axisymmetric 1D problem

  • prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Unit:(no unit assumed)

    Controllable:No

    Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

  • scalar_out_of_plane_strainScalar variable for axisymmetric 1D problem

    C++ Type:std::vector<VariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:Scalar variable for axisymmetric 1D problem

  • subblock_index_providerSubblockIndexProvider user object name

    C++ Type:UserObjectName

    Unit:(no unit assumed)

    Controllable:No

    Description:SubblockIndexProvider user object name

  • use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

  • volumetric_locking_correctionFalseFlag to correct volumetric locking

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Flag to correct volumetric locking

Optional Parameters

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Unit:(no unit assumed)

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • implicitTrueDetermines whether this object is calculated using an implicit or explicit form

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Determines whether this object is calculated using an implicit or explicit form

  • seed0The seed for the master random number generator

    Default:0

    C++ Type:unsigned int

    Unit:(no unit assumed)

    Controllable:No

    Description:The seed for the master random number generator

Advanced Parameters

  • output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)

    C++ Type:std::vector<std::string>

    Unit:(no unit assumed)

    Controllable:No

    Description:List of material properties, from this material, to output (outputs must also be defined to an output type)

  • outputsnone Vector of output names where you would like to restrict the output of variables(s) associated with this object

    Default:none

    C++ Type:std::vector<OutputName>

    Unit:(no unit assumed)

    Controllable:No

    Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object

Outputs Parameters