- boundaryThe boundary of interest.
C++ Type:BoundaryName
Unit:(no unit assumed)
Controllable:No
Description:The boundary of interest.
- surface_radiation_object_nameName of the GrayLambertSurfaceRadiationBase UO
C++ Type:UserObjectName
Unit:(no unit assumed)
Controllable:No
Description:Name of the GrayLambertSurfaceRadiationBase UO
GrayLambertSurfaceRadiationPP
This postprocessor allows to extract radiosity, heat flux density, and temperature from the GrayLambertSurfaceRadiationBase object.
Description
This postprocessor extracts radiosity, heat flux density, or temperature from the GrayLambertSurfaceRadiation userobject. The boundary from which this information is extracted needs to be specified.
Example Input File Syntax
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 2
nx = 1
ny = 1
[]
[Problem]
kernel_coverage_check = false
[]
[Variables]
[./temperature]
initial_condition = 300
[../]
[]
[UserObjects]
[./gray_lambert]
type = ConstantViewFactorSurfaceRadiation
boundary = 'bottom top left right'
fixed_temperature_boundary = 'bottom top'
fixed_boundary_temperatures = '550 300'
adiabatic_boundary = 'right left'
emissivity = '1 0.75 0.75 0.75'
temperature = temperature
view_factors = '0 0.123 0.6928 0.1841;
0.123 0 0.1841 0.6928;
0.2771 0.0736 0.4458 0.2035;
0.0736 0.2771 0.2035 0.4458'
[../]
[]
[VectorPostprocessors]
[./lambert_vpp]
type = SurfaceRadiationVectorPostprocessor
surface_radiation_object_name = gray_lambert
information = 'temperature emissivity radiosity heat_flux_density'
[../]
[./view_factors]
type = ViewfactorVectorPostprocessor
surface_radiation_object_name = gray_lambert
[../]
[]
[Postprocessors]
[./heat_flux_density_bottom]
type = GrayLambertSurfaceRadiationPP
surface_radiation_object_name = gray_lambert
return_type = HEAT_FLUX_DENSITY
boundary = bottom
[../]
[./temperature_left]
type = GrayLambertSurfaceRadiationPP
surface_radiation_object_name = gray_lambert
return_type = TEMPERATURE
boundary = left
[../]
[./temperature_right]
type = GrayLambertSurfaceRadiationPP
surface_radiation_object_name = gray_lambert
return_type = TEMPERATURE
boundary = right
[../]
[./brightness_top]
type = GrayLambertSurfaceRadiationPP
surface_radiation_object_name = gray_lambert
return_type = RADIOSITY
boundary = top
[../]
[]
[Executioner]
type = Transient
num_steps = 1
[]
(moose/modules/heat_transfer/test/tests/gray_lambert_radiator/gray_lambert_cavity.i)Input Parameters
- execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
Default:TIMESTEP_END
C++ Type:ExecFlagEnum
Unit:(no unit assumed)
Controllable:No
Description:The list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- return_typeHEAT_FLUX_DENSITYRequested return type: RADIOSITY | HEAT_FLUX_DENSITY | TEMPERATURE
Default:HEAT_FLUX_DENSITY
C++ Type:MooseEnum
Unit:(no unit assumed)
Controllable:No
Description:Requested return type: RADIOSITY | HEAT_FLUX_DENSITY | TEMPERATURE
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Optional Parameters
- allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- execution_order_group0Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
Default:0
C++ Type:int
Unit:(no unit assumed)
Controllable:No
Description:Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
- force_postauxFalseForces the UserObject to be executed in POSTAUX
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in POSTAUX
- force_preauxFalseForces the UserObject to be executed in PREAUX
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in PREAUX
- force_preicFalseForces the UserObject to be executed in PREIC during initial setup
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in PREIC during initial setup
- outputsVector of output names where you would like to restrict the output of variables(s) associated with this object
C++ Type:std::vector<OutputName>
Unit:(no unit assumed)
Controllable:No
Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.