ViewFactorPP

This postprocessor allows to extract view factors from ViewFactor userobjects.

Description

This postprocessor extracts view factors between from_boundary to to_boundary from the view factor userobject provided by view_factor_object_name.

Example Input File Syntax

[Mesh]
  type = GeneratedMesh
  dim = 2
  xmin = 0
  xmax = 1
  ymin = 0
  ymax = 2
  nx = 20
  ny = 20
[]

[Problem]
  kernel_coverage_check = false
[]

[Variables]
  [./temperature]
    initial_condition = 300
  [../]
[]

[UserObjects]
  [./gray_lambert]
    type = ViewFactorObjectSurfaceRadiation
    boundary = 'bottom top left right'
    fixed_temperature_boundary = 'bottom top'
    fixed_boundary_temperatures = '550 300'
    adiabatic_boundary = 'right left'
    emissivity = '1 0.75 0.75 0.75'
    temperature = temperature
    view_factor_object_name = view_factor
  [../]

  [./view_factor]
    type = UnobstructedPlanarViewFactor
    boundary = 'left right bottom top'
    normalize_view_factor = true
    execute_on = 'INITIAL'
  [../]
[]

[Postprocessors]
  [./heat_flux_density_bottom]
    type = GrayLambertSurfaceRadiationPP
    surface_radiation_object_name = gray_lambert
    return_type = HEAT_FLUX_DENSITY
    boundary = bottom
  [../]

  [./temperature_left]
    type = GrayLambertSurfaceRadiationPP
    surface_radiation_object_name = gray_lambert
    return_type = TEMPERATURE
    boundary = left
  [../]

  [./temperature_right]
    type = GrayLambertSurfaceRadiationPP
    surface_radiation_object_name = gray_lambert
    return_type = TEMPERATURE
    boundary = right
  [../]

  [./brightness_top]
    type = GrayLambertSurfaceRadiationPP
    surface_radiation_object_name = gray_lambert
    return_type = RADIOSITY
    boundary = top
  [../]
[]

[Executioner]
  type = Transient
  num_steps = 1
[]

[Outputs]
  csv = true
[]
(moose/modules/heat_transfer/test/tests/gray_lambert_radiator/gray_lambert_cavity_automatic_vf.i)

Input Parameters

  • from_boundaryThe boundary from which to compute the view factor.

    C++ Type:BoundaryName

    Unit:(no unit assumed)

    Controllable:No

    Description:The boundary from which to compute the view factor.

  • to_boundaryThe boundary from which to compute the view factor.

    C++ Type:BoundaryName

    Unit:(no unit assumed)

    Controllable:No

    Description:The boundary from which to compute the view factor.

  • view_factor_object_nameName of the ViewFactor userobjects.

    C++ Type:UserObjectName

    Unit:(no unit assumed)

    Controllable:No

    Description:Name of the ViewFactor userobjects.

Required Parameters

  • execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.

    Default:TIMESTEP_END

    C++ Type:ExecFlagEnum

    Unit:(no unit assumed)

    Options:NONE, INITIAL, LINEAR, NONLINEAR_CONVERGENCE, NONLINEAR, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM, TRANSFER

    Controllable:No

    Description:The list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.

  • prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Unit:(no unit assumed)

    Controllable:No

    Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

  • use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

Optional Parameters

  • allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Unit:(no unit assumed)

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • execution_order_group0Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.

    Default:0

    C++ Type:int

    Unit:(no unit assumed)

    Controllable:No

    Description:Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.

  • force_postauxFalseForces the UserObject to be executed in POSTAUX

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Forces the UserObject to be executed in POSTAUX

  • force_preauxFalseForces the UserObject to be executed in PREAUX

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Forces the UserObject to be executed in PREAUX

  • force_preicFalseForces the UserObject to be executed in PREIC during initial setup

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Forces the UserObject to be executed in PREIC during initial setup

  • outputsVector of output names where you would like to restrict the output of variables(s) associated with this object

    C++ Type:std::vector<OutputName>

    Unit:(no unit assumed)

    Controllable:No

    Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object

  • use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

Advanced Parameters

References

No citations exist within this document.