- cohesionA SolidMechanicsHardening UserObject that defines hardening of the cohesion
C++ Type:UserObjectName
Unit:(no unit assumed)
Controllable:No
Description:A SolidMechanicsHardening UserObject that defines hardening of the cohesion
- dilation_angleA SolidMechanicsHardening UserObject that defines hardening of the dilation angle (in radians)
C++ Type:UserObjectName
Unit:(no unit assumed)
Controllable:No
Description:A SolidMechanicsHardening UserObject that defines hardening of the dilation angle (in radians)
- friction_angleA SolidMechanicsHardening UserObject that defines hardening of the friction angle (in radians)
C++ Type:UserObjectName
Unit:(no unit assumed)
Controllable:No
Description:A SolidMechanicsHardening UserObject that defines hardening of the friction angle (in radians)
- internal_constraint_toleranceThe Newton-Raphson process is only deemed converged if the internal constraint is less than this.
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The Newton-Raphson process is only deemed converged if the internal constraint is less than this.
- yield_function_toleranceIf the yield function is less than this amount, the (stress, internal parameter) are deemed admissible.
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:If the yield function is less than this amount, the (stress, internal parameter) are deemed admissible.
SolidMechanicsPlasticMohrCoulombMulti
The SolidMechanicsPlasticMohrCoulombMulti has not been documented. The content listed below should be used as a starting point for documenting the class, which includes the typical automatic documentation associated with a MooseObject; however, what is contained is ultimately determined by what is necessary to make the documentation clear for users.
Non-associative Mohr-Coulomb plasticity with hardening/softening
Overview
Example Input File Syntax
Input Parameters
- execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
Default:TIMESTEP_END
C++ Type:ExecFlagEnum
Unit:(no unit assumed)
Controllable:No
Description:The list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
- max_iterations10Maximum number of Newton-Raphson iterations allowed in the custom return-map algorithm. For highly nonlinear hardening this may need to be higher than 10.
Default:10
C++ Type:unsigned int
Unit:(no unit assumed)
Controllable:No
Description:Maximum number of Newton-Raphson iterations allowed in the custom return-map algorithm. For highly nonlinear hardening this may need to be higher than 10.
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- shiftYield surface is shifted by this amount to avoid problems with defining derivatives when eigenvalues are equal. If this is larger than f_tol, a warning will be issued. This may be set very small when using the custom returnMap. Default = f_tol.
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Yield surface is shifted by this amount to avoid problems with defining derivatives when eigenvalues are equal. If this is larger than f_tol, a warning will be issued. This may be set very small when using the custom returnMap. Default = f_tol.
- use_custom_returnMapTrueUse a custom return-map algorithm for this plasticity model, which may speed up computations considerably. Set to true only for isotropic elasticity with no hardening of the dilation angle. In this case you may set 'shift' very small.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Use a custom return-map algorithm for this plasticity model, which may speed up computations considerably. Set to true only for isotropic elasticity with no hardening of the dilation angle. In this case you may set 'shift' very small.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Optional Parameters
- allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- execution_order_group0Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
Default:0
C++ Type:int
Unit:(no unit assumed)
Controllable:No
Description:Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
- force_postauxFalseForces the UserObject to be executed in POSTAUX
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in POSTAUX
- force_preauxFalseForces the UserObject to be executed in PREAUX
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in PREAUX
- force_preicFalseForces the UserObject to be executed in PREIC during initial setup
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in PREIC during initial setup
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.