- absolute_value_vector_tagsThe tag names for extra vectors that the absolute value of the residual should be accumulated into
C++ Type:std::vector<TagName>
Unit:(no unit assumed)
Controllable:No
Description:The tag names for extra vectors that the absolute value of the residual should be accumulated into
- active__all__ If specified only the blocks named will be visited and made active
Default:__all__
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:If specified only the blocks named will be visited and made active
- base_nameMaterial property base name
C++ Type:std::string
Unit:(no unit assumed)
Controllable:No
Description:Material property base name
- constraint_typesType of each constraint: stress or strain.
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Controllable:No
Description:Type of each constraint: stress or strain.
- decomposition_methodTaylorExpansionMethods to calculate the finite strain and rotation increments
Default:TaylorExpansion
C++ Type:MooseEnum
Unit:(no unit assumed)
Controllable:No
Description:Methods to calculate the finite strain and rotation increments
- extra_vector_tagsThe tag names for extra vectors that residual data should be saved into
C++ Type:std::vector<TagName>
Unit:(no unit assumed)
Controllable:No
Description:The tag names for extra vectors that residual data should be saved into
- formulationTOTALSelect between the total Lagrangian (TOTAL) and updated Lagrangian (UPDATED) formulations for the new kernel system.
Default:TOTAL
C++ Type:MooseEnum
Unit:(no unit assumed)
Controllable:No
Description:Select between the total Lagrangian (TOTAL) and updated Lagrangian (UPDATED) formulations for the new kernel system.
- global_strainName of the global strain material to be applied in this strain calculation. The global strain tensor is constant over the whole domain and allows visualization of the deformed shape with the periodic BC
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:Name of the global strain material to be applied in this strain calculation. The global strain tensor is constant over the whole domain and allows visualization of the deformed shape with the periodic BC
- inactiveIf specified blocks matching these identifiers will be skipped.
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:If specified blocks matching these identifiers will be skipped.
- new_systemFalseIf true use the new LagrangianStressDiverence kernels.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:If true use the new LagrangianStressDiverence kernels.
- targetsFunctions giving the target values of each constraint.
C++ Type:std::vector<FunctionName>
Unit:(no unit assumed)
Controllable:No
Description:Functions giving the target values of each constraint.
- use_automatic_differentiationFalseFlag to use automatic differentiation (AD) objects when possible
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Flag to use automatic differentiation (AD) objects when possible
- verboseFalseDisplay extra information.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Display extra information.
- volumetric_locking_correctionFalseFlag to correct volumetric locking
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Flag to correct volumetric locking
Solid Mechanics QuasiStatic Physics System
Set up stress divergence kernels with coordinate system aware logic
The Solid Mechanics Physics Action is a convenience Action that simplifies part of the mechanics system setup.
It applies to both the current kernel system based on the StressDivergenceTensors kernels and to the new kernel system based on the TotalLagrangianStressDivergence and UpdatedLagrangianStressDivergence kernels. Some options only apply to one or the other system, as outlined below.
It performs
Add StressDivergence Kernels (for the current coordinate system) – both systems, only Cartesian coordinates for the Lagrangian kernel system
Add WeakPlaneStress Kernel (for weak enforcement of the plane stress condition) – only the
StressDivergenceTensors
systemAdd Strain calculation material (for the chosen strain model) – both systems
Correctly set use of displaced mesh – both systems
Optional: Setup of displacement variables (with the correct order for the current mesh) – both systems
Optional: Add AuxVariables and AuxKernels for various tensor components and quantity outputs – both systems
Optional: Set up out-of-plane stress/strain consistently – only the
StressDivergenceTensors
systemOptional: Automatic extraction of eigenstrain names from materials and correct application to proper blocks – both systems
Optional: Setup cell-average homogenization constraints on the simulation – only the new Lagrangian kernels
Constructed MooseObjects
The Solid Mechanics QuasiStatic Physics Action is used to construct the kernels, displacement variables, and strain materials in a consistent manner as required for a continuum mechanics simulation simulation. Optionally it generates aux variables and auxkernels to aid in the output of tensor components and scalar quantities.
For the StressDivergenceTensors
Kernels
Functionality | Replaced Classes | Associated Parameters |
---|---|---|
Calculate stress divergence equilibrium for the given coordinate system | StressDivergenceTensors and optionally WeakPlaneStress or StressDivergenceRZTensors or StressDivergenceRSphericalTensors | displacements : a string of the displacement field variables |
Add the displacement variables | Variables | add_variables : boolean |
Calculation of strain for the given coordinate system | ComputeFiniteStrain or ComputePlaneFiniteStrain or ComputeAxisymmetric1DFiniteStrain or ComputeAxisymmetricRZFiniteStrain | strain : MooseEnum to select finite or strain formulations |
ComputeSmallStrain or ComputePlaneSmallStrain or ComputeAxisymmetric1DSmallStrain or ComputeAxisymmetricRZSmallStrain | ||
ComputeIncrementalStrain or ComputePlaneIncrementalStrain or ComputeAxisymmetric1DIncrementalStrain or ComputeAxisymmetricRZIncrementalStrain | incremental : boolean for using a incremental strain formulation | |
Add AuxVariables and AuxKernels for various tensor component and quantity outputs | Material Properties as well as AuxVariables and RankTwoAux or RankTwoScalarAux or RankFourAux | generate_output : a string of the quantities to add |
Add Material Properties for various tensor component and quantity outputs | generate_output : a string of the quantities to add | |
Add the optional global strain contribution to the strain calculation | Couples the GlobalStrain system | global_strain : name of the material property that computes the global strain tensor |
Note that there are many variations for the calculation of the stress divergence and the strain measure. Review the theoretical introduction for the Stress Divergence and the Strain Formulations for more information.
For the New Lagrangian Kernel system
Functionality | Replaced Classes | Associated Parameters |
---|---|---|
Calculate stress divergence equilibrium for the given coordinate system | TotalLagrangianStressDivergence or UpdatedLagrangianStressDivergence | displacements : a string of the displacement field variables, formulation : a MooseEnum controlling if the UPDATED or TOTAL Lagrangian formulation is used |
Add the displacement variables | Variables | add_variables : boolean |
Calculation of strain for the given coordinate system | ComputeLagrangianStrain | strain : MooseEnum to select finite or small kinematic formulations |
Add AuxVariables and AuxKernels for various tensor component and quantity outputs | Material Properties as well as AuxVariables and RankTwoAux or RankTwoScalarAux or RankFourAux | generate_output : a string of the quantities to add |
Add Material Properties for various tensor component and quantity outputs | generate_output : a string of the quantities to add | |
Add the optional homogenization constraints | Adds all objects required to impose the homogenization constraints | constraint_types : MooseEnum controlling whether strain or stress constraints and imposed, targets : Functions providing the time-dependent targets |
automatic_eigenstrain_names = true
, the eigenstrain_names will be populated under restrictive conditions for classes such as CompositeEigenstrain, ComputeReducedOrderEigenstrain, and RankTwoTensorMaterialADConverter. The input components for these classes are not included in the "eigenstrain_names" passed to the Physics/SolidMechanics/QuasiStatic
block. Set the automatic_eigenstrain_names = false
and populate this list manually if these components need to be included.
Example Input File Syntax
New Kernel System
The following example sets up the new Lagrangian kernel system with a total Lagrangian formulation for a large displacement kinematics problem.
[Physics]
[SolidMechanics]
[QuasiStatic]
[all]
strain = SMALL
add_variables = true
new_system = true
formulation = TOTAL
volumetric_locking_correction = true
generate_output = 'cauchy_stress_xx cauchy_stress_yy cauchy_stress_zz cauchy_stress_xy cauchy_stress_xz cauchy_stress_yz strain_xx strain_yy strain_zz strain_xy strain_xz strain_yz'
[]
[]
[]
[]
(moose/modules/solid_mechanics/test/tests/lagrangian/cartesian/total/action/action_L.i)New Kernel System, with Homogenization Constraints
The following uses the action to setup homogenization constraints in a problem using the new kernel system.
[Physics]
[SolidMechanics]
[QuasiStatic]
[all]
strain = FINITE
add_variables = true
new_system = true
formulation = TOTAL
volumetric_locking_correction = false
constraint_types = 'stress strain strain strain stress strain strain strain strain'
targets = 'stress11 strain21 strain31 strain12 stress22 strain32 strain13 strain23 strain33'
generate_output = 'pk1_stress_xx pk1_stress_xy pk1_stress_xz pk1_stress_yx pk1_stress_yy pk1_stress_yz pk1_stress_zx pk1_stress_zy pk1_stress_zz deformation_gradient_xx deformation_gradient_xy deformation_gradient_xz deformation_gradient_yx deformation_gradient_yy deformation_gradient_yz deformation_gradient_zx deformation_gradient_zy deformation_gradient_zz'
[]
[]
[]
[]
(moose/modules/solid_mechanics/test/tests/lagrangian/cartesian/total/homogenization/action/action_3d.i)Subblocks
The subblocks of the QuasiStatic Physics Action are what triggers MOOSE objects to be built. If none of the mechanics is subdomain restricted a single subblock can be used
[Physics]
[SolidMechanics]
[QuasiStatic]
[./all]
strain = FINITE
add_variables = true
[../]
[../]
[]
[]
(moose/modules/solid_mechanics/test/tests/finite_strain_elastic/finite_strain_elastic_new_test.i)if different mechanics models are needed, multiple subblocks with subdomain restrictions can be used.
[Physics]
[SolidMechanics]
[QuasiStatic]
# parameters that apply to all subblocks are specified at this level. They
# can be overwritten in the subblocks.
add_variables = true
strain = FINITE
generate_output = 'stress_xx'
[./block1]
# the `block` parameter is only valid insde a subblock.
block = 1
[../]
[./block2]
block = 2
# the `additional_generate_output` parameter is also only valid inside a
# subblock. Values specified here are appended to the `generate_output`
# parameter values.
additional_generate_output = 'strain_yy'
[../]
[]
[]
[]
(moose/modules/solid_mechanics/test/tests/action/two_block_new.i)Parameters supplied at the [Physics/SolidMechanics/QuasiStatic]
level act as defaults for the QuasiStatic Solid Mechanics Physics subblocks.
Input Parameters
- add_variablesFalseAdd the displacement variables
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Add the displacement variables
- displacementsThe nonlinear displacement variables for the problem
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:The nonlinear displacement variables for the problem
- scalingThe scaling to apply to the displacement variables
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The scaling to apply to the displacement variables
- temperatureThe temperature
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:The temperature
Variables Parameters
- additional_generate_outputAdd scalar quantity output for stress and/or strain (will be appended to the list in `generate_output`)
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Controllable:No
Description:Add scalar quantity output for stress and/or strain (will be appended to the list in `generate_output`)
- additional_material_output_familySpecifies the family of FE shape functions to use for this variable.
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Controllable:No
Description:Specifies the family of FE shape functions to use for this variable.
- additional_material_output_orderSpecifies the order of the FE shape function to use for this variable.
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Controllable:No
Description:Specifies the order of the FE shape function to use for this variable.
- generate_outputAdd scalar quantity output for stress and/or strain
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Controllable:No
Description:Add scalar quantity output for stress and/or strain
- material_output_familySpecifies the family of FE shape functions to use for this variable.
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Controllable:No
Description:Specifies the family of FE shape functions to use for this variable.
- material_output_orderSpecifies the order of the FE shape function to use for this variable.
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Controllable:No
Description:Specifies the order of the FE shape function to use for this variable.
Output Parameters
- automatic_eigenstrain_namesFalseCollects all material eigenstrains and passes to required strain calculator within TMA internally.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Collects all material eigenstrains and passes to required strain calculator within TMA internally.
- eigenstrain_namesList of eigenstrains to be applied in this strain calculation
C++ Type:std::vector<MaterialPropertyName>
Unit:(no unit assumed)
Controllable:No
Description:List of eigenstrains to be applied in this strain calculation
- incrementalFalseUse incremental or total strain (if not explicitly specified this defaults to incremental for finite strain and total for small strain)
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Use incremental or total strain (if not explicitly specified this defaults to incremental for finite strain and total for small strain)
- strainSMALLStrain formulation
Default:SMALL
C++ Type:MooseEnum
Unit:(no unit assumed)
Controllable:No
Description:Strain formulation
- strain_base_nameThe base name used for the strain. If not provided, it will be set equal to base_name
C++ Type:std::string
Unit:(no unit assumed)
Controllable:No
Description:The base name used for the strain. If not provided, it will be set equal to base_name
- use_finite_deform_jacobianFalseJacobian for corrotational finite strain
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Jacobian for corrotational finite strain
Strain Parameters
- blockThe list of ids of the blocks (subdomain) that the stress divergence kernels will be applied to
C++ Type:std::vector<SubdomainName>
Unit:(no unit assumed)
Controllable:No
Description:The list of ids of the blocks (subdomain) that the stress divergence kernels will be applied to
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- diag_save_inThe displacement diagonal preconditioner terms
C++ Type:std::vector<AuxVariableName>
Unit:(no unit assumed)
Controllable:No
Description:The displacement diagonal preconditioner terms
- save_inThe displacement residuals
C++ Type:std::vector<AuxVariableName>
Unit:(no unit assumed)
Controllable:No
Description:The displacement residuals
Advanced Parameters
- cylindrical_axis_point1Starting point for direction of axis of rotation for cylindrical stress/strain.
C++ Type:libMesh::Point
Unit:(no unit assumed)
Controllable:No
Description:Starting point for direction of axis of rotation for cylindrical stress/strain.
- cylindrical_axis_point2Ending point for direction of axis of rotation for cylindrical stress/strain.
C++ Type:libMesh::Point
Unit:(no unit assumed)
Controllable:No
Description:Ending point for direction of axis of rotation for cylindrical stress/strain.
- directionDirection stress/strain is calculated in
C++ Type:libMesh::Point
Unit:(no unit assumed)
Controllable:No
Description:Direction stress/strain is calculated in
- spherical_center_pointCenter point of the spherical coordinate system.
C++ Type:libMesh::Point
Unit:(no unit assumed)
Controllable:No
Description:Center point of the spherical coordinate system.
Coordinate System Parameters
- out_of_plane_directionzThe direction of the out-of-plane strain.
Default:z
C++ Type:MooseEnum
Unit:(no unit assumed)
Controllable:No
Description:The direction of the out-of-plane strain.
- out_of_plane_pressure_functionFunction used to prescribe pressure (applied toward the body) in the out-of-plane direction (y for 1D Axisymmetric or z for 2D Cartesian problems)
C++ Type:FunctionName
Unit:(no unit assumed)
Controllable:No
Description:Function used to prescribe pressure (applied toward the body) in the out-of-plane direction (y for 1D Axisymmetric or z for 2D Cartesian problems)
- out_of_plane_pressure_material0Material used to prescribe pressure (applied toward the body) in the out-of-plane direction
Default:0
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:Material used to prescribe pressure (applied toward the body) in the out-of-plane direction
- out_of_plane_strainVariable for the out-of-plane strain for plane stress models
C++ Type:VariableName
Unit:(no unit assumed)
Controllable:No
Description:Variable for the out-of-plane strain for plane stress models
- planar_formulationNONEOut-of-plane stress/strain formulation
Default:NONE
C++ Type:MooseEnum
Unit:(no unit assumed)
Controllable:No
Description:Out-of-plane stress/strain formulation
- pressure_factorScale factor applied to prescribed out-of-plane pressure (both material and function)
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Scale factor applied to prescribed out-of-plane pressure (both material and function)
- scalar_out_of_plane_strainScalar variable for the out-of-plane strain (in y direction for 1D Axisymmetric or in z direction for 2D Cartesian problems)
C++ Type:VariableName
Unit:(no unit assumed)
Controllable:No
Description:Scalar variable for the out-of-plane strain (in y direction for 1D Axisymmetric or in z direction for 2D Cartesian problems)
Out-Of-Plane Stress/Strain Parameters
Associated Actions
Available Actions
- Solid Mechanics App
- CommonSolidMechanicsActionStore common solid mechanics parameters
- QuasiStaticSolidMechanicsPhysicsSet up stress divergence kernels with coordinate system aware logic